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Abstract 

In a series of experimental measurements, the difference among values obtained in 

several experiments (between-errors) quite often are greater than the reproducibility scatter 

within an experiment (within-errors). This is typically explained in terms of systematic 

experimental errors. The application of a method devised in mathematical statistics, i.e., The 

Estimation of Variance Components, allows us to treat this problem. In the present work, the 

use of this method is considered for the non-linear thermodynamic model pertaining to the 

assessment of the BaCu and Cu-Y phase diagrams. The linear error model comprising a 

reproducibility error with the shift and tilt systematic errors was employed to describe the 

scatter observed. Special attention is paid to visualizing the quality of the fit. 
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Introduction 

For a given system, the more experiments that are conducted, the more reliable the 

results, especially when the experiments are done by different authors. Nobody seems to 

disagree with this statement. Along the way, however, one has to deal with systematic errors 



because the results of the distinct experiments usually differ more between each other than the 

reproducibility error in a single experiment. Formally speaking, there is a statistically 

significant difference between distinct experiments, i.e., the ratio of the corresponding sum of 

squares is more than the Fisher's criterion allows. 

In order to proceed further in such a situation, mathematical statistics suggest to us 

random and mixed models [1] wherein deviations from the theoretical model are simulated as 

several random effects, with different components due to measurement errors (experimental 

noise) and systematic errors (laboratory or experimental factors). Extensive use of such 

models can be found in meta-analysis [2, 3]. 

The phrase 'statistical description of the systematic errors' implied above may look 

somewhat contradictory at first. An IUPAC Report [4] even defines systematic errors as those 

for which statistics cannot be used: 

"Uncertainties which are known to exist or are inferred but for which 

insufficient information is available for a statistically valid treatment to be 

used, so that their effect upon the results is dependent on the experience and 

judgment of the author are usually called systematic errors." 

A middle ground between the IUPAC definition and statistics is still quite possible. To 

this end, it is necessary to introduce a hierarchy of errors. If there are results of only a single 

experiment, mathematical statistics can say nothing about systematic errors without doubt. 

Yet, when there are results from several experimenters, it is conceivable that different 

experimenters have made the same systematic errors by chance, and if so, statistics could say 

something about them. In the latter case, there are two levels of random errors: 1) the 

reproducibility errors within a single experiments and 2) the systematic errors that are constant 

in the single experiment and that change randomly from one experiment to another. 

It is possible to go further and say that in all the experiments there is the same error, 

e.g., all the experimenters employed the same sample that was not of high purity. Statistics 

does not work with such an error again until new experiments indicate that the latter error has 

become random. A new level of random errors can be introduced and the analysis repeated. 

In a previous paper [5], a mixed model comprising a non-linear theoretical model with 

two-level random effects to describe between- and within-errors has been considered. The 

laboratory effect was composed of a random shift and a random "tilt", that is, a random 



regression slope shared by all measurements from the same series. Such an error model (linear 

error model) is quite simple and practical, but powerful enough to be used in many important 

applications. The example of simultaneously processing 26 different experiments on vapori-

zation thermodynamics of potassium chloride under the linear error model has been given, and 

the results obtained have been compared with those after the traditional least square method. 

Two examples of the application of the linear error model to the assessment of the 

phase diagram (Ba-Cu and Cu-Y binaries) are given in the present work. The important 

feature of the current case is that it was necessary to treat the results from qualitatively 

different experiments. The implications for the data processing only will be discussed; a 

discussion of the results from a thermodynamics point of view is given elsewhere [6, 7]. 

Linear error model 

It is assumed that there are results from M  experimental series and each series is 

comprised of N i  pairs of experimental points 

 { yij , x ij }; i = 1, ..., M ; j = 1, ..., N i  (1) 

where x ij  is the input and yij  is the response. Note that yij  and/or x ij  in distinct series may 

be completely different physical quantities. The theoretical relationship between input and res-

ponse in each series is assumed to be known, except for the unknown parameters (vector Θ) 

 ε ij  = fi ( x ij , Θ) + ε ij  (2) 

where ε ij  is the total error in yij  and the notation fi  implies that the theoretical model may 

be different in different series. The only imperative is that the unknown parameters are the 

same inside all the theoretical relationships. 

The following linear error model has been previously introduced: [5]  

 ε ij  = ε r ij,  + εa i,  + εb i, ( x ij  - x i ) (3) 

where 

 x i  = (Σ j x ij )/N i  

It consists of the reproducibility error ε r ij,  (experimental noise) and two systematic errors, 

εa i,  and εb i, . The former accounts for the shift systematic error and the latter for the tilt 

laboratory factor (tilt systematic error). Note that the linear error model is a special case of the 

general error model described in [1]. 



Equation (3) implies that the experimental points in a series are randomly scattered 

over the line that shifted and tilted from the theoretical model because of the systematic errors. 

Fig 1 presents the supposed deviate behavior in a single series and allows us to write down a 

geometrical interpretation of equation (3) 

 FC = FE + DC + ED (4) 

It should be mentioned that the series scattered over the theoretical model without any 

shift and tilt is desirable. However, this is usually impossible because there are other series 

besides that one displayed in Fig. 1 and the distance between the series is more than the 

measurement noise. 

In order to make statistics work, it is assumed that the errors ε r ij, , εa i,  and εb i,  are 

independent random quantities with a distribution that is not too far from normal. The 

expected values of errors are assumed to be zero and the variances are σ r i,
2 , σ a i,

2  and σ b i,
2  

accordingly. 

The task is to determine the unknown parameters (vector Θ) in the theoretical models 

and unknowns variances σ r i,
2 , σ a i,

2  and σ b i,
2  (variance components) from the experimental 

values (1). To this end, applying the maximum likelihood method, i.e., maximizing the 

function 

 L = ln det D(ε) - ε'D(ε)
-1
ε (5) 

has been suggested. In Eq. (5), the unknown parameters (vector Θ) are inside the vector ε 

consisting from all the deviates in all the series, and the unknown variance components, σ r i,
2 , 

σ a i,
2  and σ b i,

2  are in the dispersion matrix D(ε) of the vector ε. More details on the linear 

error model including the algorithm for maximizing (5) and the comparison with the least 

squares are given elsewhere [5]. 

Thermodynamic model 

Chemical thermodynamics states that if the molar Gibbs energies of all the phases in 

the system are known, one can compute all the thermodynamic properties of the system as 

well as the complete phase diagram [8] (see also publications in the journal CALPHAD). This 

allows us to establish only the molar phase Gibbs energies as unknowns. All other measurable 

quantities then will be some function of these unknowns. 



In the case of the Ba-Cu binary, it is necessary to determine Gibbs energies of the three 

phases. The two phases are stoichiometric compounds, BaCu and BaCu13  with Gibbs energy 

given by Eqs (16-18) in Annex and the third is a solution, liquid alloy Ba-Cu with Gibbs 

energy given by Eqs. (19-20). The coefficients a
mn

, b
mn

, cmn  in Eq. (18) and the interaction 

parameters A p , Bp , C p  in Eq. (20) are the unknowns and all of them compose the vector Θ 

in Eq. (2). In the case of the Cu-Y binary, the Gibbs energies of the five stoichiometric 

compounds, Cu Y6 , Cu Y4 , Cu Y7 2 , Cu Y2 , CuY and the binary liquid alloys of Cu-Y are 

to be determined. In both binaries, the Gibbs energies of pure components as functions of 

temperature were taken from SGTE compilation [9]. 

In order to determine unknowns in the Gibbs energies of the stoichiometric compounds 

and the liquid alloys, the available experimental values are to be processed. The equations 

corresponding to the function fi  in Eq. (2) for those experiments that were available for the 

Ba-Cu and Cu-Y binaries are given below. 

There are three kinds of calorimeter experiments. Solution calorimetry of the 

stoichiometric compounds produces the enthalpy of formation at some temperature (usually 

298 K). Under the model given by Eq. (18), the relationship between the Gibbs energy and 

enthalpy (Eq. 21) leads to the equation 

 ∆r mn ijH
,

 = a
mn

 - cmn Ti  + ε ij  (6) 

Mixture calorimetry allows us to measure the enthalpy of mixing. From Eqs. (20) and 

(21), one can write 

 ∆mix ijH / x ij1, x ij2,  = Σ
p

q

=0

(A p  - C p Ti )( x ij2,  - x ij1, )
p
 + ε ij  (7) 

The enthalpy of mixing is divided by the product of ( x ij1, x ij2, ) in order to make the variances 

of reproducibility errors homogeneous. This means that in the case of Eq. (7) the hypothesis 

that D(ε r ij, ) = σ r i,
2  is acceptable. 

If the experimental partial enthalpies of mixing are given, then Eqs. (22) and (23) lead 

to the following theoretical models 

 ∆H' ,1 ij  = Σ
p

q

=0

x ij2,
2
(A p  - C p Ti )( x ij2,  - x ij1, )

p-1
( x ij2,  - x ij1,  - 2p x ij1, ) + ε ij  (8) 

 ∆H' ,2 ij  = Σ
p

q

=0

x ij1,
2
(A p  - C p Ti )( x ij2,  - x ij1, )

p-1
( x ij2,  - x ij1,  + 2p x ij2, ) + ε ij  (9) 



Drop calorimetry yields the change in enthalpy H HT − 298  for some composition of 

the system as a function of temperature. In the subsolidus area we have 

 
H HT ij

−
298

 = H
s
(Tij , x i2, ) - H

s
(298, x i2, ) + ε ij  (10) 

where H
s
 is the enthalpy of the solid phases at some composition. Provided that the mole 

fraction x i2,  of the second component describing the composition is located between the two 

stoichiometric compounds A B
m n

 and A B
r s

 the mole fractions of which are equal to 

x
mn2,  = n/(m + n) and x

rs2,  = s/(r + s), respectively, the following holds true: 

 H
s
 = {H

mn
( x

rs2,  - x i2, ) + H
rs

( x i2,  - x
mn2, )}/( x

rs2,  - x
mn2, ) 

Here H
mn

 and H
rs

 stand for the enthalpies of the two stoichiometric compounds, which 

include the unknown parameters and which may be obtained from the Gibbs energies given by 

Eq. (16) by the means of Eq. (21). 

When drop calorimetry is performed for the melts, Eq. (10) changes to 

 
H HT ij

−
298

 = H l (Tij , x i2, ) - H
s
(298, x i2, ) + ε ij  (11) 

where H l  is the enthalpy of the melt that in turn can be obtained from Eq. (19) by employing 

the same Eq. (21). Eq. (10) contains the unknown parameters c
mn

 and crs  from Eq. (18) and 

Eq. (11) additionally holds the parameters A p  and C p  from the Gibbs energy of the melt 

(Eqs. 19-20). 

Besides the thermodynamic data, there are results of thermal analysis: the coordinates 

of the monovariant (liquidus) and nonvariant (eutectics and peritectics) equilibria. In the first 

case, the temperature of the liquidus is a function of the melt composition, i.e., the mole 

fraction of the second component in the melt, x2 . Thus, it can be written 

 Tmono ij,  = Tmono ij
calc

, ( x ij2, , Θ) + ε ij  (12) 

where Tmono ij
calc

,  is to be calculated at the given values of the unknown parameters from the 

equilibrium criterion (24). Equation (24) cannot be solved in the closed form and the 

Tmono ij
calc

, is to be found by numerical means. 

In the case of nonvariant equilibrium, Eq. (12) should be changed to a pair of 

equations 

 Tnon ij,  = Tnon ij
calc

,
(Θ) + ε ij  (13) 

 x non ij2, ,  = x non ij
calc
2, , (Θ) + ε ij  (14) 

because the temperature and the composition no longer depend on each other. To find the 

coordinates of the non-variant equilibrium, the equilibria criterion in the form of a system of 



Eqs. (25) and (26) should be employed. The latter must be solved by numerical analysis at any 

given set of the unknown parameters. 

Finally, it should be mentioned that not only those listed above, but all the experimental 

equilibrium values will be some functions of the unknowns in Eqs. (18) and (20) due to the 

thermodynamics laws. 

Estimating unknown parameters and variance components 

All available results on the Ba-Cu and Cu-Y systems found in the literature were at 

first subjected to expert analysis, and some works and experimental points that can clearly be 

classified as "wrong" were thrown out [6, 7]. Tables 1 and 2 list the literature data that passed 

the expert analysis and were employed for the statistical procedure. Shown are the code 

ascribed to the series, the experimental quantities measured with a reference to the theoretical 

model, the number of experimental points and the code of the paper in which the results were 

obtained. The experimental points were separated into the distinct series shown in Tables 1 

and 2 because 

1) they were measured by different authors, or 

2) they were measured in the same work but the author clearly indicated that he made 

several distinct experiments, or 

3) they were measured in the same experiment but they are described by different 

equations. 

The only exception to these rules was made in the Cu-Y system with the results of the 

thermal analysis since each author gave just one point for the monovariant or nor-variant 

equilibrium. This forced us to combine the values obtained by different authors in a single 

series for a given phase equilibrium. In all,, there were 178 experimental points in 18 series 

pertaining to the Ba-Cu binary and 185 points in 35 series for the Cu-Y system. 

The total error ε ij  in each series was modeled by the linear error model (3). In some 

series where there was no an input variable (non-variant equilibria and the enthalpy of the 

reaction 6), the tilt systematic error is not applicable and it was set to zero. After the expert 

analysis, the series were combined into groups that are separated by the solid lines in Tables 1 

and 2, and the series in such a group were assumed to possess the same quality. From a 

statistical point of view, it means that the distribution of the reproducibility error ε r ij, , the 



distribution of the shift systematic errorεa i, , and the distribution of the tilt systematic errors 

εb i,  for all the series in a single group can be considered to be the same, respectively. Let the 

index α enumerate the groups of the series. Then for all series included in the group α the 

following was assumed to hold: 

 D(εαr ij, ) = σ
αr,

2 , D(εαa i, ) = σ
αa,

2 , D(εα
b i,

) = σ
αb,

2  (15) 

The small difference between grouping the series in the Ba-Cu and Cu-Y binaries can 

be seen in the case of the liquidus and nonvariant temperatures (compare Tables 1 and 2). 

Both nonvariant and monovariant (liquidus) temperatures are determined from the kinks 

obtained on the cooling or heating curve. However, if several thermal curves are measured at 

different compositions in the same region of the phase diagram this gives rise to several 

liquidus temperatures but to the same nonvariant temperature. Thus, the final precision of the 

nonvariant temperature should be higher than for the monovariant one. Because of that 

consideration, the nonvariant and monovariant temperatures were put in the two different 

groups in the Ba-Cu system (see Table 1). Yet, in the Cu-Y binary all these temperatures were 

combined in a single group because the number of measurements was not enough to separate 

them. 

In the Ba-Cu system, the application of the hypothesis (15) and the division of the 

experimental series into four groups (see Table 1) gave us a total of nine unknown variance 

components (see Table 4). The tilt systematic error is not applicable to the nonvariant 

temperatures (group N) and the enthalpy of reaction (17) (group F). Also, in the original paper 

on the enthalpy of reaction (17) there were no primary experimental enthalpies but the mean 

enthalpy with its standard deviation. This forced us to set the values of σ r i,
2  in the group F as 

a given constant a priori. The same considerations led us to 12 unknown variance components 

in the case of the Cu-Y binary (see Table 5). 

 The maximum likelihood function (Eq. 5) was maximized to determine the unknowns 

in the Gibbs energies and the unknown variance components. The number of the unknowns in 

the Gibbs energy should be determined during the data processing since it is impossible to say 

a priori how many terms in the Gibbs energy of mixing are necessary and whether all of three 

parameters in the temperature function (Eqs. 8 and 10) are necessary to fit the experimental 

values adequately. To this end, the simplest approach was applied. Consecutive maximization 



of the function (5) has been performed starting with a small number of the unknown 

parameters in the Gibbs energies and then increasing their number. 

The recommended number of unknowns in the Gibbs energies (see Table 3, all other 

parameters were set equal to zero) was chosen based upon several considerations. First, 

further increase in the number of unknowns did not lead to a sharp increase in the value of 

function L (Eq. 5) and to a decrease in the values of variance components. At the same time, 

the columns of the Jacobean became almost linearly dependent and the entire task ill-behaved. 

Second, thermodynamic constraints were taken into account. When the parameters 

b
mn

 and c
mn

 were made free, this improved the description of the liquidus and non-variant 

temperatures but led to the prediction that the stoichiometric phases are thermodynamically 

unstable at room temperature. Such phase behavior ("pendent phase") occurs rather rarely, 

and it was assumed to be an artifact of insufficient precision in the available experimental 

values. Note that in similar systems both the heat capacity and the entropy of reaction (7) are 

close to zero [10]. Thus, the solution with the parameters b
mn

 and c
mn

 set equal to zero was 

preferred. A further increase in the number of terms in the Gibbs energy of mixing, in turn, led 

to the prediction that the liquid alloys of Ba-Cu and Cu-Y have a miscibility gap with a lower 

critical point that is also unlikely in such systems. 

The main difference in out data processing as compared with other "phase diagram 

optimizations" lies in introducing the shift and tilt systematic errors in the error model (see 

Eq. 3). For the sake of comparison, another solution that will be referenced as ML1 has also 

been found. Here, the variance components corresponding to the shift and tilt systematic 

errors were set to zero a priori. In the latter case, the dispersion matrix D(ε) becomes 

diagonal, and this makes it quite close to the weighted least squares (WLS) with the difference 

that in WLS the weights should be assigned a priori and in the maximum likelihood they are 

obtained during the maximization procedure. 

Both solutions for both binaries are presented in Tables 3 to 5. 

Visualizing the quality of the fit 

The first test of whether parameters found are reliable is the quality of the fit by the 

model of the primary experimental values. To this end, three types of graphs that can help in 

visualizing the quality of the fit are discussed in this section. 



The first plot is the usual type of graph when the final fitted curves are displayed along 

with the original experimental values (see Fig. 2 and 3 in the case of the Ba-Cu binary, and 

Fig. from 6 to 8 for Cu-Y system). The problem in analyzing these graphs is related to the low 

scale that makes it difficult to follow small differences between the model and the experimental 

values. Differences of more than several percents only can be clearly seen on such graphs. 

Another problem is that the comparison between the descriptions of different heterogeneous 

data is quite difficult. For example, compare Fig. 6 to 8 and say what the type of values was 

described in the best way. 

The second type of graph is presented by Fig. 4 for the Ba-Cu system and Fig. 8 and 9 

for Cu-Y. On these graphs, the ordinate shows the value of the deviate divided by the 

reproducibility standard deviation of the corresponding series. Plotting the deviates by 

themselves allowed us to enhance the scale and making them dimensionless permitted us to 

combine the deviates for heterogeneous data. In Fig. 4, 8, and 9 much more subtle effects of 

the fitting are seen and the direct comparison of the heterogeneous data is possible. The 

behavior of the deviates clearly indicates that the difference between distinct series is more 

than the reproducibility noise, i.e., that there are systematic errors within the series (compare 

with Fig. 1). Also, it is possible to state that the linear error model (3) is applicable in the cases 

of the Ba-Cu and Cu-Y binaries. 

The third type of graph addresses the problem of the numerous experimental points. 

Because of this, it is still difficult to compare the distinct series, especially at first glance. As 

discussed elsewhere [5], it is possible to draw such a graph when a whole series will be 

presented by a single point (see Fig. 5 and 11). The idea is that at any given set of parameters 

each series is characterized by the shift error, εa i,  and by the tilt error, εb i, . Then, plotting 

εb i,  vs. εa i,  values gives us a very useful graph that indicates the extent of overall agreement 

among all the series. Fig. 1 allows us to suggest a graphic interpretation of these errors, i.e., 

the shift error is the AB interval and the tilt error is equal to the ratio of DE to BD. The 

formulas for estimating the numerical values of εa i,  and εb i,  are given in Ref. [5]. 

The tilt and shift errors have different meanings and in Ref. [5] it was suggested to plot 

the value of εb i, (Pi /N i )
1/2 instead of the εb i,  where 

 Pi  = Σ j ( x ij  - x i )
2 



Besides having the same dimension, the product εb i, (Pi /N i )
1/2 has the same meaning as the 

εa i, . The latter shows the mean difference between the total ε ij  and the reproducibility ε r ij,  

errors in the given series due to the shift, and the product εb i, (Pi /N i )
1/2 displays the similar 

difference due to the tilt. 

Finally, in order to make it possible to compare heterogeneous series between each 

other, the values of εa i,  and εb i, (Pi /N i )
1/2 were divided by the reproducibility standard 

deviation of the i-th series. Thus, if a point in Fig. 5 and 11 is shifted from the center along the 

x-axis by the unit value it means that the shift of this series is equal to the mean reproducibility 

error in this series. If a point went along the y-axis by the unit value, this says that the given 

series has a tilt that led to the mean difference between ε ij  and ε r ij,  equal to its mean 

reproducibility error. 

Each of the graphs described above has its advantages and drawbacks, and the best 

results can be achieved by analyzing the three types of the graphs simultaneously. 

Discussion 

The approach shown in the present paper comprises two steps - the expert analysis and 

the statistical procedure. The role of the former should be emphasized - the final values of the 

recommended parameters are based heavily upon the expert analysis, i.e., in spite of the 

advanced statistics treatment a lot of subjectivity still remains. Actually, the subjectivity can 

never be completely excluded in practical applications. Hope for the "golden" algorithm that 

would just take raw data and produce the true answer automatically is ungrounded because 

before data processing we must always postulate some hypothesis that cannot be proved 

empirically in that treatment. 

In this study, there are three statements that affect the results most. First concerns the 

choice of the functions for the Gibbs energies and the number of unknowns parameters inside 

them. It is necessary to understand that the true behavior of the Gibbs energy probably differs 

from the chosen functional dependency and the error produced by that fact is ignored in the 

discussion as follows. What can be said is just that the precision of the available experimental 

data is not enough to enhance the number of unknowns at the present time. 

The second major hypothesis is about the linear error model (3). Figures 2 to 4 and 6 

to 10 clearly display the fact that the distinct series have systematic errors and that Eq. (3) 



seems to be sensible but the question whether the concrete form of Eq. (3) is the "true" one 

still remains. 

Finally, it is implied that all the series inside the chosen group have the same quality 

(Eq. 15). The division of the series into the groups is likely the most subjective hypothesis. 

Another expert may well say that a particular work is the “right” one and other data should be 

ignored. 

The application of the maximum likelihood method permitted the qualitative expert 

information only to be employed. After the hypothesis (15), maximizing the likelihood 

function yielded the estimates of unknown parameters and of unknown variance components 

concurrently. This simplifies the analysis considerably as compared with the least squares 

method when the dispersion matrix D(ε) must be supplied up to the constant, i.e., there the 

expert must express his/her recommendations as concrete numerical values (quantitative 

information). 

The numerical values of the variance components, namely the standard deviation 

estimates (square root of the variance), for the recommended solution ML are given in Tables 

4 and 5. The reproducibility standard deviation, σ
αr,  shows the scatter associated with the 

noise for the series in the group α. The shift σ
αa,  and tilt σ

αb,  standard deviations display 

the order of magnitude of the shift and the tilt, respectively, for the series in the group α. For 

example, the values of the variance components for the eight series of liquidus temperatures, 

L1 to L8, in the Ba-Cu system are as follows, σ
αr,  = 8.2 K, σ

αa,  = 22 K, and σ
αb,  = 120 

K. This means that while the experimental noise was about 8 K the eight series are shifted 

from the calculated liquidus by about 22 K, and the slope of the series is different from the 

slope of the model by about 120 K. In the example above the slope has the same dimension as 

the intercept because mole fraction is a dimensionless quantity. 

The mixed models do not enjoy widespread use in physical chemistry. More often, the 

error model includes the reproducibility error only. To this end, as was mentioned in the 

previous section, the solution ML1 was found when the shift and tilt errors were eliminated 

from the error model. The hypothesis that there is no statistically significant difference 

between distinct series is incorrect. It can be tested by any statistical criterion (for instance, the 

Fisher test), and actually can be seen from Fig. 2 to 4 and 6 to 10 without any statistics. Still, 



it is interesting to compare the solutions ML and ML1 to see what the consequences of 

neglecting the systematic errors are. 

The main difference between solutions ML and ML1 lies in the structure of the 

dispersion matrix D(ε). It is non-diagonal in solution ML due to the laboratory effects being in 

the linear error model (3) and diagonal in solution ML1 when all the variances of the 

systematic errors have been set equal to zero a priori. Thus, the solution ML1 underestimates 

the systematic errors, and as a result, it overestimates the reproducibility errors (see Table 4 

and 5). This means that in the circumstance displayed in Fig. 1 solution ML1 explains all the 

difference between experimental points and the theoretical model as reproducibility noise only. 

The wrong dispersion matrix, however, gives reasonable values of the unknown 

parameters (see Table 3) and fits the experimental values (see Fig. 2 to 4 and 6 to 10) well. 

The bigger difference concerns the standard deviations of the parameters, and thus, the 

standard deviation of the fit. The standard deviations estimated in solution ML1 are smaller 

those from solution ML by factor from 1.5 to 2 and seems to be too optimistic. The reason for 

smaller standard deviations estimated in solution ML1 comes again from underestimating the 

systematic errors. Increasing a number of the experimental points in a single series reduces the 

uncertainty in the parameters produced by the reproducibility error but cannot affect the 

uncertainty coming from systematic errors. Solution ML separates the total deviation into the 

reproducibility noise and the systematic errors and can take into account the different 

influences of the number of the points on the reproducibility and systematic errors. Solution 

ML1 treats the total deviation as the reproducibility error only, and thus, overestimates the 

influence of the number of the experimental points. 

This can be clearly seen in the Ba-Cu system where the main controversy is a 

difference between the barium partial enthalpies measured by two different groups (see series 

H1 and H2 in Fig. 2, 4 and 5); they differ even in sign. Yet, there is no reason to prefer one of 

the series to another and my expert conclusion is that the enthalpy of mixing in the Ba-Cu 

melts should be not far from zero. It should be noted that when both series have been 

excluded from the data processing it leads to a high predicted enthalpy of mixing. So, both 

series were put in and this happened to be a good example of how the number of points 

influences the results in solutions ML and ML1. 



The number of the points in the series H1 is 68, rather high, and in the series H2 it is 

just five. The solution ML has ascribed large systematic errors to the partial enthalpies (see 

Table 4), and as a result, the liquidus temperatures were approximated better than the partial 

enthalpies (see Fig. 2 to 5). The opposite is the case in the solution ML1 where, because of 

equating systematic errors to zero, the high total number of points in partial enthalpies has 

pulled the predicted solution from the liquidus temperatures. 

One may say that the series H1 is more consistent with the phase diagram data in both 

solutions, that can be seen in Fig. 2 to 5, and this can be a reason to neglect the series H2. This 

would be true if we could be sure that there is one term only in the Gibbs energy of mixing, as 

accepted in the present model. However, this is a hypothesis only, at present we can say 

nothing more without new additional experimental measurements. 

In the Cu-Y system, it is possible to see that series Ts1 to Ts8 and Tl1 to Tl8 (all of 

them are measured in the same work, 89Qi) are tilted upward. This can hardly be seen from 

Fig. 7 but can clearly be detected in Fig. 10 and 11. This is an indication that either more 

parameters should be included in the model for the Cu-Y system or there were some inherent 

problems in the experimental setup of 89Qi work. The attempt to include the heat capacities in 

the Gibbs energies of the solid phases and the melt did not improve the situation much. Also 

note the difference between the series listed above and series Tl9 to Tl11 measured by 

different authors. So, the final expert conclusion was again that it is impossible to resolve the 

problem without new experiments. 

Conclusions 

Qualitatively different experimental results pertained to the Ba-Cu and Cu-Y systems 

have been processed simultaneously in order to achieve the best description of the primary 

experimental values, and thus, to obtain the most reliable Ba-Cu and Cu-Y phase diagrams. 

The analysis of deviates have showed that, as expected, the differences between 

different experiments was greater than the reproducibility errors, and that the liner error model 

(3) was appropriate in order to describe systematic errors existing in the original works. 

Three different types of plots have been employed to visualize the quality of the fit. 

Advantage of each plot has been discussed. 



The treatment under the linear error model has been compared with a traditional 

approach when systematic errors are simply discarded. The result have showed that the 

traditional treatment may lead to acceptable values of unknown parameters but with seriously 

reduced standard deviations. 

Annex. Thermodynamic relationships. 

The consideration below is limited to an A-B binary system. Let us denote the molar 

Gibbs energies of the two pure components in the solid and liquid states as G1s , G 2s , G1l  

and G 2l  accordingly. The Gibbs energy of the stoichiometric compound A B
m n

 (point phase) 

is tied to the Gibbs energies of the pure solid components: 

 G
mn

 = mG1s  + nG 2s  + (m + n)∆
r mn
G  (16) 

where ∆
r mn
G  is the Gibbs energy of the reaction 

 
m

m n+

 A(s) + 
n

m n+

 B(s) = 
1

m n+

 A B
m n

 (17) 

The temperature behavior of the Gibbs energy is usually expressed as follows 

 ∆
r mn
G  = a

mn
 + b

mn
T  + cmn T ln T  (18) 

under an assumption that the heat capacity is constant. 

The molar Gibbs energy of the binary melt, G l  is connected with the Gibbs energies of 

the liquid components 

 G l  = x1G1l  + x2 G 2l  + ∆mix G  (19) 

where x1 and x2  are the component mole fractions (note that x1 + x2  = 1). The Gibbs 

energy of mixing, ∆mix G , can be described by a polynomial in composition (see for example 

[11]) 

 ∆mix G  = x1RT ln x1 + x2RT ln x2  +  

 Σ
p

q

=0

x1 x2 (A p  + Bp T  + C p T lnT )( x2  - x1)
p
 (20) 

The enthalpy can be calculated from the Gibbs energy as follows 

 







−=

T

T
T

∂

∂ )(G/
RH 2  (21) 

The relationships between the partial enthalpies of mixing and the integral enthalpy of mixing 

are given by a pair of equations 

 ∆H'1  = ∆mix H  + x2 {
∂

∂

( H)∆mix

x1

 - 
∂

∂

( H)∆mix

x2

} (22) 



 ∆H'2  = ∆mix H  + x1{
∂

∂

( H)∆mix

x2

 - 
∂

∂

( H)∆mix

x1

} (23) 

In the case of the equilibrium A B
m n

-L between the liquid and the given compound, 

the following must be held 

 G
mn

(Tmono ij
calc

, ) = mµ1 (Tmono ij
calc

, , x ij2, ) + nµ2 (Tmono ij
calc

, , x ij2, ) (24) 

where µ1  and µ2  are the chemical potentials (the partial Gibbs energies) of the two 

components in the melt. These functions can be derived from the Gibbs energy of the melt 

(Eq. 19) by the use of the equations analogous to Eqs. (22) and (23).  

When two compounds and liquid are under equilibrium, A B
m n

-L-A B
r s

, the 

equilibrium criterion leads to a system of two equations with two unknowns 

 G
mn

(Tnon ij
calc

,
) = mµ1 (Tnon ij

calc
,

, x non ij
calc
2, , ) + nµ2 (Tnon ij

calc
,

, x non ij
calc
2, , ) (25) 

 G
rs

(Tnon ij
calc

,
) = rµ1 (Tnon ij

calc
,

, x non ij
calc
2, , ) + sµ2 (Tnon ij

calc
,

, x non ij
calc
2, , ) (26) 
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Table 1. Experimental results used for the assessment of the Ba-Cu system 

Exp. 

code 

Set of values Eq. 

N 

Comments N i  Paper 

code 

F1 {∆r mn ijH
,

} 6 ∆
r
H
BaCu

(298 K) 1 93Kon 

H1 {∆H' ,1 ij , x ij2, } 8 ∆H'1 (1400 K) 68 89Nik 

H2 {∆H' ,1 ij , x ij2, } 8 ∆H'1 (1500 K) 6 93Use 

H3 {∆H' ,2 ij , x ij2, } 9 ∆H'2 (1150 K) 43 89Nik 

L1 {Tmono ij, , x ij2, } 12 Ba-L 3 71Bru 

L2 {Tmono ij, , x ij2, } 12 Ba-L 1 93Kon 

L3 {Tmono ij, , x ij2, } 12 BaCu-L 5 71Bru 

L4 {Tmono ij, , x ij2, } 12 BaCu-L 1 93Kon 

L5 {Tmono ij, , x ij2, } 12 BaCu13 -L 2 59Bra 

L6 {Tmono ij, , x ij2, } 12 BaCu13 -L 1 71Bru 

L7 {Tmono ij, , x ij2, } 12 Cu-L 13 59Bra 

L8 {Tmono ij, , x ij2, } 12 Cu-L 2 71Bru 

N1 {Tnon ij, } 13 Ba-L-BaCu 8 71Bru 

N2 {Tnon ij, } 13 Ba-L-BaCu 1 93Kon 

N3 {Tnon ij, } 13 BaCu-L-BaCu13  15 59Bra 

N4 {Tnon ij, } 13 BaCu-L-BaCu13  5 71Bru 

N5 {Tnon ij, } 13 BaCu-L-BaCu13  2 93Kon 

N6 {Tnon ij, } 13 BaCu13 -L-Cu 1 93Kon 

The references to the original publications are elsewhere [6]. 



Table 2. Experimental results used for the assessment of the Cu-Y system 

Exp.  Set of values Eq. Comments N i  Paper code 

F1 {∆r mn ijH
,

} 6 
∆
r
H
CuY

(298 K) 1 89Sid 

H1 {∆mix ijH , x ij2, } 7 ∆mix H (1410 K)  13 83Sud 

H2 - " - 7 - " - 13 83Sud 

H3 - " - 7 ∆mix H (1373 K)  5 84Wat 

H4 - " - 7 - " - 3 84Wat 

H5 - " - 7 - " - 2 84Wat 

H6 - " - 7 - " - 1 84Wat 

H7 - " - 7 - " - 3 84Wat 

H8 - " - 7 - " - 4 84Wat 

H9 - " - 7 - " - 3 84Wat 

H10 - " - 7 - " - 5 84Wat 

H11 - " - 7 ∆mix H (1963 K)  8 90Sid 

Ts1 
{

 H H T ij
− 

298 

 

,Tij } 
10 solid, xY =0.093 6 89Qi 

Ts2 - " - 10 solid, xY =0.200 7 89Qi 

Ts3 - " - 10 solid, xY =0.278 5 89Qi 

Ts4 - " - 10 solid, xY =0.333 7 89Qi 

Ts5 - " - 10 solid, xY =0.341 5 89Qi 

Ts6 - " - 10 solid, xY =0.434 4 89Qi 

Ts7 - " - 10 solid, xY =0.500 6 89Qi 

Ts8 - " - 10 solid, xY =0.670 5 89Qi 

Tl1 - " - 11 melt, xY =0.093 4 89Qi 

Tl2 - " - 11 melt, xY =0.200 4 89Qi 

Tl3 - " - 11 melt, xY =0.278 5 89Qi 

Tl4 - " - 11 melt, xY =0.333 4 89Qi 

Tl5 - " - 11 melt, xY =0.341 3 89Qi 

Tl6 - " - 11 melt, xY =0.434 3 89Qi 

Tl7 - " - 11 melt, xY =0.500 6 89Qi 

Tl8 - " - 11 melt, xY =0.670 5 89Qi 

Tl9 - " - 11 melt, xY =0.200 1 84Wat 

Tl10 - " - 11 melt, xY =0.333 1 84Wat 

Tl11 - " - 11 melt, xY =0.500 1 84Wat 

 



 

Table 2 (continued). Experimental results used for the assessment of the Cu-Y system 

Exp.  Set of values Eq. Comments N i  Paper code 

L1 {Tmono ij, , x ij2, } 12 Cu Y4 -L 4 61Dom 61Hae 66Bea 

89Qi 

L2 - " - 12 Cu Y2 -L 4 61Dom 61Hae 89Qi 

L3 - " - 12 CuY-L 4 61Dom 61Hae 89Qi 

N1 {Tnon ij, } 13 Cu-L-Cu Y6  6 57Daa 61Dom 61Hae 

75Fed 88Dui 89Qi 

N2 - " - 13 Cu Y6 -L-Cu Y4  3 61Dom 61Hae 66Bea 

N3 - " - 13 Cu Y4 -L-Cu Y7 2  2 61Hae 66Bea 

N4 - " - 13 Cu Y7 2 -L-Cu Y2  3 61Dom 61Hae 89Qi 

N5 - " - 13 Cu Y2 -L-CuY 4 61Dom 61Hae 89Qi 

N6 - " - 13 CuY-L-Y 4 61Dom 61Hae 60Lov 

89Qi 

X1 { x non ij2, , } 14 Cu-L-Cu Y6  2 57Daa 61Dom 

X2 - " - 14 Cu Y6 -L-Cu Y4  1 61Dom 

X3 - " - 14 Cu Y7 2 -L-Cu Y2  2 57Daa 61Dom 

X4 - " - 14 Cu Y2 -L-CuY 1 61Dom 

X5 - " - 14 CuY-L-Y 2 61Dom 60Lov 

The references to the original publications are elsewhere [7]. 

 



Table 3. Thermodynamics parameters (Gibbs energy in J/mol) 

 Ba-Cu   Cu-Y  

 ML ML1  ML ML1 

a
BaCu

 -2594±240 -2858±120 aCu Y6
 -12610±560 -12550±340 

a
BaCu

13

 -925±87 -1040±37 aCu Y7 2
 -16560±680 -16480±410 

 - - aCu Y4
 -17280±710 -17200±420 

 - - aCu Y2
 -20100±790 -20060±470 

 - - aCuY  -20180±740 -20240±460 

A0  -7191±2080 -3713±480 A0  -82460±3250 -80330+1940 

 - - A1 38480±4180 41950±2300 

B0  3.36±3.60 -2.166±0.96 B0  14.74±1.70 12.73±0.95 

 - - B1  -6.61±4.80 -10.58±2.70 

 



Table 4. Variance components estimated in the system Ba-Cu 

group σ
αr,  σ

αa,  σ
αb,  

 ML ML1 ML ML1 ML ML1 

 kJ/mol kJ/mol kJ/mol 

F 3.9* 3.9* 0 0* n/a n/a 

H 1.8 3.9 7.7 0* 41  0* 

 K K K 

L 8.2 26.8 22 0* 120 0* 

N 4.0 4.1 0.21 0* n/a n/a 

The values were kept constant during the maximization of (5). 



Table 5. Variance components estimated in the system Cu-Y 

group σ
αr,  σ

αa,  σ
αb,  

 ML WLS ML WLS ML WLS 

 kJ/mol kJ/mol kJ/mol 

F 2.0* 2.0* 3.3 0* n/a n/a 

H 5.6 14.3 11 0* 160  0* 

 J/mol J/mol J/K/mol 

Ts,Tl 370 1210 1100 0* 14 0* 

 K K K 

L,N 14 16 7.1 0* 0 0* 

 dimensionless dimensionless dimensionless 

X 0.013 0.02 0.015 0* n/a n/a 

The values were kept constant during the maximization of (5). 

 



 

 

Fig. 1. Typical behaviour of the total deviates ε ij  in the i-th series as related to a 

theoretical model. The symbol ∇ shows the deviates, the long dashed line displays the best fit 

for the deviates, the small dashed line indicates the best fit that is parallel to the theoretical 

model. The point A corresponds to the mean of x ij  in this series. 



 

Fig. 2. Partial enthalpies in the Ba-Cu liquid alloys. 



 

Fig. 3. The Ba-Cu phase diagram. 



 

Fig. 4. The deviates of the experimental points in the Ba-Cu system as related to the 

solution ML. 



 

Fig. 5. Tilt systematic errors vs. shift erros in the Ba-Cu system. 



 

Fig. 6. The enthalpy of mixing of the Cu-Y liquid alloys. 



 

Fig. 7. The temperature dependence of enthalpy in the Cu-Y system. 



 

Fig. 8. The Cu-Y phase diagram. 



 

Fig. 9. The deviates of the experimental points in the Cu-Y system as related to the 

solution ML (part 1). 



 

Fig. 10. The deviates of the experimental points in the Cu-Y system as related to the 

solution ML (part 2). 



 

Fig. 11. Tilt systematic errors vs. shift errors in the Cu-Y system. 

 

 


