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1. Introduction 

Modern thermodynamics heavily depends on computing. Most practical tasks do not have a 

solution in the closed form, and thus, the use of thermodynamics is tightly bound with numerical 
optimization methods. The term “computational thermodynamics”, coined as far as I know by Bo 
Sundman, reflects this rather well. There are several integrated commercial packages available as well 

as public domain and shareware software (for example, see lists [1, 2]). Still in my view, the situation 
is quite far from the satisfactory one. 

There are many unsolved fundamental problems that lead to phenomena in thermodynamics 
circles referred to as "manual optimization" (for example, see [3]). Practically speaking, this looks 

like as follows. A researcher set up a problem, runs the software and receives that "convergence has 
not been achieved", "task has not been solved" or just "division by zero". The main reason is usually 
tied with the unsatisfactory initial guess that has been chosen automatically by the software. Then, a 

researcher has to meditate for a while and to find out the right initial guess by himself. 
Another problem with the most current software is that it is available in the binary form only. 

This means that with this software a researcher can solve mostly routine tasks and he/she can change 
nothing within the software. If you are going to work at frontiers of science, this is unacceptable, 

because in this case you cannot take part in the development of new thermodynamics ideas. 

1.1. Legal: GNU Public license 

Free Software Foundation (FSF) advocates freedom for the distribution of software (see GNU 
manifesto [4]). In my view, this is exactly what the thermodynamics community needs. The main 

requirement is that the software must be distributed with the source code and an individual must have 
full rights to modify the source code in accordance with his/her necessities. In order to achieve this 
goal, the GNU public license [5] has been developed by FSF and there is a lot of software already 

available under these terms [6]. Note that free means freedom, not price. 

1.2. Final goal 

Fig. 1 presents an overview of the computational thermodynamics library. It should be 
mentioned, that this idea is not new. The most commercial packages already have similar structure. 

A researcher starts with a thermodynamic model - he/she suggests molar Gibbs energies for all 
the phases in the system in question. For many phases the Gibbs energy can be found in the reference 
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books or thermodynamics databases (see [1, 2]). If this is not the case, the researcher should guess 
the functional form of the Gibbs energy and to leave there some unknown empirical parameters. 

When the thermodynamic model is ready, then it is possible to compute equilibrium properties 
of the system. This is achieved by means of thermodynamics algorithms and will be referred to as the 

direct problem. However, when the empirical parameters within the Gibbs energy are unknown, then 
first it is necessary to solve the inverse problem (optimizers in Fig. 1), that is, to process available 
experimental values to estimate unknown parameters within the Gibbs energies. 

 

thermodynamic

algorithms

phase models
optimizers

numerical library (FORTRAN)

thermodynamic

the molar Gibbs energy +

+ empirical

functions for

processing primary

experimental values

 
Fig. 1. A sketch for the computational thermodynamics library. 

 
Solid arrows show dependencies between different pieces of the library. Thermodynamics 

algorithms depend on phase models while optimizers rely on both phase models and thermodynamic 

algorithms. After all, the inverse problem is consecutive applications of the direct problem while 
unknown empirical parameters are changed. 

All three parts of the library depends on numerical methods. Implementations for most 
numerical approaches can be typically found as Fortran subroutines. Thus, the whole library can be 

considered as a thermodynamic shell to numerical routines. The problem is not to develop new 
numerical methods but rather to employ the latest achievements in numerical science. 

Below is a list of criteria that, in my view, should be considered as must for the library. 

• A user must be able to add new user-defined phase models and new thermodynamic algorithms to 
the library. 

• When the user is programming the new phase model, nothing (not a line) must be changed in the 
thermodynamic and optimization routines. 

• Optimization and thermodynamic algorithms must be generic and not depend on a particular phase 

model. 
Currently none of the available thermodynamic software satisfies with these criteria. The 

current paper presents the library that approaches these goals. 
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2. Library Design 

The library, as shown in Fig. 1, comprises three parts. In the implementation presented they are 
as follows: PHASE – phase models, TD_ALGO – thermodynamic algorithms, VARCOMP – the 

inverse problem. Let us start with a look what mathematical tasks are solved by each part of the 
library. 

2.1. Background for Phase Models Library (PHASE) 

The thermodynamic system consists from phases. In any case, at least a single phase must be 

considered. A system that does not contain phases is outside of the thermodynamic scope. In the 
present work, the terms phase and solution will be employed interchangeably because in the general 
case the phase is a N-component solution. Unfortunately, the term solution has two unrelated 

meanings, chemical and mathematical, and in the current paper I need both of them. Hope that this 
will not bring much confusion. 

A phase (solution) comprises several chemical substances (often they are referred to as 

species). Each of them has a molecular formula, that can be expressed as a formula vector, ai (a set of 

subscripts to the elements in the molecular formula). A set of all the formula vectors leads to the 

formula matrix, A = {a1, ... , aN} (see, for example [7]), where N is the number of species. The 
important characteristic of the phase is the number of components in the solution, which is 

determined as a rank of the formula matrix 

 C = rank(A) (2.1) 

If C < N then the solution is usually referred to as an association solution, and a set of components 
can be obtained as a subset of linearly independent species. 

The task of the first part of the library, PHASE, is to create a framework for modeling the 
molar Gibbs energy of a phase as a function of external variables: temperature, pressure and mole 
fractions of the components 

 Gm(T, p, x1, ..., xC) (2.2) 

Note that by definition the sum of the mole fractions is always equal to one, Σixi = 1, and thus, the 

number of independent variables here is equal to C + 1, where C is the number of phase components. 
If we speak of an associated solution, than the mole fractions in Eq. (2.2) mean the gross-
composition. They should be computed as if the solution contains only the independent components 

without any other species. 
Quite often, for example in an associated solution, in the original Gibbs energy there are more 

variables than the required number of independent external variables. We can express this in the 
general form as follows 

 Gm(T, p, x1, ..., xC; y1, ..., yN) (2.3) 

where yi is the extra-variable. In the example of an associated solution, yi would mean the “true” mole 

fraction of the i-th species. The extra-variables yi are sometimes referred to as internal variables. 
Conventionally, all the internal variables are determined by minimizing the Gibbs energy over 
unknown internal variables, y1, ..., yN, at constant external variables, T, p, x1, ..., xC. Let us denote the 

values found in this procedure by the subscript eq. Then the values obtained are substituted into the 
original Gibbs energy and, as a result, we still have the Gibbs energy as function of the external 

variables only 

 Gm{T, p, x1, ..., xC; y1,eq(T, p, x1, ..., xC), ..., yN,eq(T, p, x1, ..., xC)} (2.4) 

Note that as shown in Eq (2.4), yi,eq, by itself is a function of T, p, x1, ..., xN. The major practical 
consequence of introducing internal variables is that even if the original Gibbs energy is given in the 
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closed form, the final Gibbs energy can be usually obtained by numerical methods only (it is highly 
unlikely that the results of the minimization might be found in the closed form). The principal 

difference between Eq. (2.3) and Eq. (2.4) is that while the latter concerns only the equilibrium states 
of the solution the former describes the non-equilibrium states as well. The TDLIB user is supposed 

to be interested in Eq. (2.4) only because the number of applications where it is necessary to deal 
with Eq. (2.3) directly is very low. 

The Gibbs energy is usually partitioned as follows 

 Gm = Gref + Gmix (2.5) 

where the first term relates to the Gibbs energies of pure components before mixing  

 Gref = Σi xi G
*

m,i(T, p) (2.6) 

where a superscript * reminds us that this quantity is for a pure component. The second term is called 

as the Gibbs energy of mixing and corresponds to the process of mixing of pure components at 
constant temperature and pressure. In turn, the Gibbs energy of mixing is sometimes partitioned to 
the ideal Gibbs energy and the excess Gibbs energy 

 Gmix = Gideal + Gexcess (2.7) 

For the simplest models without internal parameters, the ideal Gibbs energy is estimated as follows 

 Gideal = Σi xi RT ln xi (2.8) 

The excess Gibbs energy is usually modeled as some sum of products of a function in temperature 
and pressure and a function in mole fractions. Worthy of noting that both ideal and excess Gibbs 

energies usually should be equal to zero when a composition vector corresponds to the pure 
component. 

The molar Gibbs energy of the phase as a function of external parameters (temperature, 
pressure, and mole fractions, Eqs 2.2 and 2.4) can be considered as a master function, because all 

other thermodynamic properties of the phase can be inferred from its molar Gibbs energy by means of 
differentiating. The integral thermodynamic properties are obtained as follows. 

 Sm = -(∂Gm/∂T)p,x 

 Hm = -T2{(∂Gm/T)/∂T)p,x 

 Cp,m = -T(∂2Gm/∂T2)p,x (2.9) 

 Vm = (∂Gm/∂p)T,x 

 αV = (∂2Gm/∂p∂T)x/(∂Gm/∂p)T,x 

 κT = -(∂2Gm/∂p2)T,x/(∂Gm/∂p)T,x 

In these equations, one must employ the Gibbs energy in the form of Eq. (2.2) or (2.4). If for some 
phase model with internal parameters we do not have Eq. (2.4) in the closed form, it is always 

possible to take the derivatives numerically. However even in this case, we can find at least the first 
derivatives of the Gibbs energy analytically if we employ the mathematical rules for the derivatives of 

the compound function.  
We have 

 Gm(T, p, x) = Gm{T, p, x, yeq(T, p, x)} (2.10) 

where x and y are the vectors of mole fraction of components and internal variables accordingly. 
Then 

 (∂Gm/∂T)p,x = (∂Gm/∂T)p,x,y + Σi (∂Gm/∂yi)T,p,x,y(j≠i) (∂yi/∂T)p,x (2.11) 
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Similar equations can be written for other first derivatives of the Gibbs energy. If the internal 
parameters are found, as was mentioned above, by minimizing the Eq. (2.3) over internal variables, 
y1, ..., yN, then Eq. (2.11) can be simplified because in this case the second term from the right side 
happens to be zero, and we finally have 

 (∂Gm/∂T)p,x = (∂Gm/∂T)p,x,y (2.12) 

In some cases we need to apply Eq. (2.11) directly. To this end, it is necessary to compute the 

derivatives (∂yi/∂T)p,x. Some problem here is that, as a rule, internal variables are not known as 

functions of T, p, x in the closed form, but rather they are computed as a solution of a system of N 
non-linear equations with N unknowns. 

 f1(y1, ..., yN; T, p, x1, ..., xC) = 0 

 … (2.13) 

 fN(y1, ..., yN; T, p, x1, ..., xC) = 0 

The notation above emphasizes that the values of internal variables that should be found by solving 
Eq. (2.13) depends on temperature, pressure, and component mole fractions. In this case, the rule for 

implicit derivatives allows us to find (∂yi/∂T)p,x required. What is necessary is to solve a system of N 
linear equations as follows 

 Σi (∂f1/∂yi)T,p,x,y(j≠i) (∂yi/∂T)p,x = - (∂f1/∂T)p,x,y 

 … (2.14) 

 Σi (∂fN/∂yi)T,p,x,y(j≠i) (∂yi/∂T)p,x = - (∂fN/∂T)p,x,y 

The system of equation (2.14) can be easily modified in order to find (∂yi/∂p)T,x and (∂yi/∂xk)T,p,x(l≠k) if 
necessary. 

Partial molar properties can be also computed from the molar Gibbs energy. Let us take the 
chemical potential as an example. By definition, 

 µi = (∂G/∂ni)T,p,n(j≠i) (2.15) 

where G = n Gm, n is total number of moles. After some work with derivatives, one can obtain 

 µi = Gm - Σk xk (∂Gm/∂xk)T,p,x(j≠k) + (∂Gm/∂xi)T,p,x(j≠i) (2.16) 

Similar formulas can be obtained for other partial properties. Note that after partitioning the Gibbs 
energy, the partial properties will be also partitioned. In the case of the phase model with internal 
parameters, the approach expressed above by Eqs (2.10) to (2.14) can be used to find 

(∂Gm/∂xi)T,p,x(j≠i). 
Pure or stoichiometric substances are considered to be a special, degenerated case of a solution 

model, because formally they can be called as one-component solutions (N = 1). In thermodynamic 
slang they are referred to as point phases. Here, the molar Gibbs energy depends on temperature and 

pressure only, G*
m,i(T, p) (the mole fraction is always equal to one). As a result, all the partial 

properties are equal to the integral molar properties, for example 

 µ* = G*
m (2.17) 

For pure substances, the Gibbs energy of mixing as defined above must be equal to zero. However, 
there is some sense still to partition the Gibbs energy of a pure substance 

 G*
m = Gref + Gmix (2.18) 

where two terms have the same notation as in Eq. (2.5) for solutions but have a completely different 
thermodynamic meaning. 
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Thermodynamics laws permit us to determine experimentally the change in the Gibbs energy 
only. If we see something like G = 5000 J.mol-1, this means that the author have chosen some 

reference state and the Gibbs energy actually corresponds to some difference between the current and 
reference states. For solutions in Eq. (2.5) the second term, the Gibbs energy of mixing is the 

difference by definition and its numerical value is defined unambiguously. On the other hand, the 
numerical value of the first term depends on the chosen reference state for the pure components (see 
Eq. 2.6). 

As a result, it is good to make a similar partition for pure substances (Eq. 2.18), when Gref 
means some reference state and Gmix is the change in the Gibbs energy between the reference state 

and the given pure substance. This can be achieved by introducing a reaction of formation of the pure 
substance from chosen key substances, which will represent the reference state 

 Σj νj Bj = C (2.19) 

where C is the given pure substance and Bj are the key substances. Thus, for pure substances 

 Gmix = ∆rG(19) (2.20) 

 Gref = Σj νj Gm,j(Bj) (2.21) 

The notation introduced by Eqs (2.20) and (2.21) might look strange. Yet, this allows us to 

maintain a similar formal structure for pure substances and solutions, and as a result, this permits us 
to develop a similar interface. After all, the point phase is a special case of a solution. Along this way, 
a system can be considered as a vector of phases, some of them being solutions and some point 

phases. Otherwise, this would require us to develop two different objects for point phases and 
solutions. In my view, this would lead to unnecessary complexity for thermodynamics algorithms 

because then it would be necessary to describe a system as two separate vectors. Finally, to make a 
smoother transition between solutions and point phases, it is assumed that for the point phases 

Gideal = 0 and Gexcess = Gmix. 

2.2. Background for Thermodynamic Algorithms Library (TD_ALGO) 

Generally speaking, an algorithm represents a transformation of the input vector x to the output 

vector y according to the given rules. This concept was adopted in order to develop the general 
interface for the algorithm in the TDLIB. 

In the current release of the library, just one thermodynamic algorithm is implemented– the 
computation of the phase equilibrium conditions. Let us consider the appropriate mathematics for this 

case. 
Let us assume that in the system at equilibrium there are P phases. In the general case, a 

number of components for different phases might vary. Suppose, that the k-th phase has Ck 
components, and the total number of species in the system is given as 

 K = Σk Ck (2.22) 

In Eq. (2.22) the phase Gibbs energies are considered to have the form of Eqs (2.2) or (2.4). In other 
words, the task of computing the internal variables, if they exist, is assumed to be already solved. 

Formula vectors of K species form a formula matrix of the system (see, for example [7]) and its rank 
defines the number of independent components in the whole system 

 C = rank(A) (2.23) 

This equation is analogous to Eq. (2.1) with difference that here the whole system, comprising 
several phases, is described. 

The number of linear-independent chemical reactions that can take place in the system is given 
as 

 R = K – C = Σk Ck – C (2.24) 
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The stoichiometric coefficients in these reactions form a stoichiometric matrix 

 ν = {νij}, i = 1, …, K; j = 1, …, R (2.25) 

Then, according to the equilibrium criterion, R equations should be held between the chemical 
potentials of the phase components 

 Σi νij µi(T, p, x) = 0 (2.26) 

Chemical potentials of phase components in the system of equations (2.26) depend on temperature, 
pressure and mole fractions of components. Hence, the total number of variables to take into account 

in (2.26) is equal to 

 L = 2 + Σk (Ck – 1) = 2 + Σk Ck - P (2.27) 

because for the k-th phase there are only Ck – 1 independent mole fractions. The difference between 
the number of variables and the number of equations is defined as a number of degrees of freedom 

 F = L – R = 2 + Σk Ck – P – (Σk Ck – C) = 2 + C - P (2.28) 

Eq. (2.28) expresses the well-known Gibbs phase rule. 
For a given set of P phases, the task is to compose the system of equations (2.26), to choose F 

from L variables and set their values, and finally to solve the system (2.26) for the other R variables 
that will be considered as unknowns. Such a task is very common in the inverse problem, when there 
are experimental results on phase equilibrium, and it is necessary to include them into the 

simultaneous assessment of thermodynamic properties. 
The next function will be used extensively in the TD_ALGO library 

 Fmin = sqrt{Σj [Σi νij µi(T, p, x)]2} (2.29) 

If it is zero (in numerical science, this means close to zero enough), then the system (2.26) is solved 

and we have an equilibrium state, if it is not, then the value of Fmin is proportional to the proximity of 
the current state to the equilibrium one. 

In a general sense, in the algorithm PhaseEquilibrium implemented in TDLIB, the input vector 

x is formed from the F variables set before solving the system (2.26), and the output vector y is 
defined by the R variables found while solving the system (2.26). 

Another important thermodynamic task – computation of the equilibrium composition in the 
closed system at given temperature, pressure and mole numbers of elements [29] is the first on my list 

of further extensions to the library. 

2.3. Background for Inverse Problem Library (VARCOMP) 

Let us assume that we have M experiments, and the i-th experiment comprises Ni experimental 
points. In the general case, each experimental point in the i-th experiment can be expressed in the 

next form 

 {yij, xij, zi}; i = 1, ..., M; j = 1, ..., Ni (2.30) 

where yij is what has been measured, xij is what has been changed and the vector zi contains other 

values that have been fixed during the i-th experiment. In other words, Eq. (2.30) describes the 
conventional experiment in physical chemistry, when only one variable is changed during the 

experiment, even though the output variable is a function of several variables. As experimental 
physical chemistry switches to multidimensional experimental design (modern analytical chemistry 

appears to be doing so), the approach described below may need to be somewhat modified. 
As was mentioned in Sec. 2.1 the phase Gibbs energies can contain unknowns to be determined 

from the available experimental values (Eq. 2.30). Let us denote all the unknowns in the Gibbs 

energies by the vector Θ. Now we can use thermodynamic laws to express the measured quantity, yij, 
as function of controlled variables in the i-th experiment and unknowns in the Gibbs energies 
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 yij = fi(xij, zi; Θ) + εij (2.31) 

It is always possible for all thermodynamic experiments. As a result, the task of simultaneous 
assessment is to obtain a set of the unknown parameters in the system of equations (2.31) that gives 
the best description of the original experimental values in Eq. (2.30). The good description is usually 

tied with small residuals 

 εij = yij - fi(xij, zi; Θ) (2.32) 

so the task is to find such a vector Θ, which gives the smallest εij. 
There is a common problem tied with the application of Eq. (2.32). In many important cases, 

the function fi(xij, zi; Θ) should be computed numerically, for example, as a result of solving 

numerically a system of equations (2.26). In practice, this means that in order to compute fi(xij, zi; Θ) 
some numerical subroutine should be called. However, the numerical subroutine well might not find 

the solution required. A numerical subroutine could just return some code stating that convergence 
has not occurred or that there were some other problems, which prevented the subroutine to find the 
answer required. In thermodynamic tasks this is a common case when the initial guess for the vector 

Θ is bad, and also when the equilibrium in question cannot be computed in principle. Commercial 
packages available do almost nothing to help thermodynamicist in this case. The ThermoCalc, as I 

was told, in this case returns an arbitrary value for the fI(xij, zi; Θ) with the hope that with the next 

values of Θ this function will be computed normally. Typically, this problem requires an assessor to 

find manually the better initial guess for the vector Θ. In thermodynamics circles such a situation is 

known as “manual” optimization (see, for example [4]). 

In order to cope with this problem in our library it is suggested that if fi(xij, zi; Θ) was not 
computed successfully, then instead of Eq. (2.32) the residual is computed as follows 

 εij = penalty(proximity to successful computing of fi) (2.33) 

This means that some penalty is assigned to the residual. This should help to keep the whole 

optimization going with some hope that the optimizer will finally find such a value of the vector Θ 
when all the residuals could be computed successfully. The trick, to be fortunate along this way, is to 
make the returned penalty depend on something that characterizes the closeness to successful 

computing of fi. This would push the optimizer to change the vector Θ to the right direction. 
In the current release of TDLIB, the problem described above appears in the PhaseEquilibrium 

algorithm within the TD_ALGO library. The good penalty to return in the case of the failure of the 
numerical subroutine here is Fmin (Eq. 2.29). This will be further discussed in Sec. 3.3.1. 

The conventional approach to define the “best” solution is tied with the minimal value of the 

sum of squares 

 SS = ε' D(ε)-1 ε (2.34) 

where ε is the vector of all residuals εij computed by Eq. (2.32) or (2.33) from all experiments (its 

length is Σi Ni) and D(ε) is its dispersion matrix. In the weighted least squares, the dispersion matrix 

is modeled by the diagonal matrix, containing the inverse variances of experimental points, D(ε) = 

diag{D(εr,ij)
-1}. 

There are two related problems, which limit the application of the weighted least squares. First, 

all the variances should be chosen by an expert a priori before the assessment. Second, the diagonal 
structure of the dispersion matrix does not allow us to treat systematic errors. To this end, the linear 
error model was introduced in Ref. [8] 

 εij = εr,ij + εa,i + εb,i(xij - xi) (2.35) 

Here it is assumed that the total experimental error εij consists not only of the reproducibility error 

εr,ij, but also of two systematic errors, εa,i and εb,i. Both systematic errors are constant within the i-th 

experiment, but they are assumed to change randomly among different experiments. The first 
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systematic error, εa,i, accounts for the shift systematic error and second, εb,i, for the tilt laboratory 
factor (tilt systematic error). 

The linear error model results in the dispersion matrix of experimental errors, D(ε), taking the 
block-diagonal form (see details in [8]). Each block corresponds to a single experiment and its 
elements are functions of three variance components 

 D(εr,ij) = σ2
r,i, D(εa,i) = σ2

a,i, D(εb,i) = σ2
b,i (2.36) 

The considerations above allow us to set up a more general task than the least squares as 

follows. For the given experimental points (Eq. 2.29), it is necessary to determine the vector Θ with 
unknown parameters in the thermodynamic model and unknown variance components contained in 
the dispersion matrix simultaneously. The maximum likelihood method provides a framework to 

achieve this goal, that is, to maximize 

 L = − ln {det[D(ε)]} − ε' D(ε)-1 ε (2.37) 

It also provides the criterion for the best solution for the system (2.31). The algorithm for maximizing 
Eq. (2.37) under the linear error model given by Eq. (2.35) is described in Ref. [8]. The applications 
of this approach to materials problem are described in Ref. [9 – 11]. 

It should be especially mentioned, that the weighted least squares is a special simplified case of 
the new general task that can be reached by equating the variances of systematic errors (and hence 

the systematic errors by themselves) to zero and supplying the ratio between variances of the 
reproducibility error a priori. This means that the VARCOMP library can be used to solve the 

conventional least squares tasks. If you are in doubts about Eq. (2.35), you can employ the traditional 
treatment without any problem. 

2.4. Some Thoughts on Possible Implementations (a single muster-function, 

interpreting, object-oriented approach) 

The key to the successful development of the whole library is to solve the requirements 
described in Sec. 1.2. The main problem here is tied with the first part of the library. Let us discuss it. 

The goal of the first part of the library may look rather simple: to make a framework for 

modeling the phase molar Gibbs energy (Eq. 2.2) as a function of temperature, pressure and mole 
fractions. The problem is that we do not know its form; actually it is known that in real applications it 

could take rather diverse forms. However, from the viewpoint of other parts of the library the phase 
Gibbs energy should look consistently, that is, it should take the temperature, pressure, and mole 

fractions as input, and produce the Gibbs energy and/or its derivatives (see Eq. 2.9) as output. The 
final goal is to represent a system as a uniform vector of phases, even though if the Gibbs energies of 
different phases might be computed quite differently. 

In order to discuss this problem, I will employ C++ although the problem by itself is language 
independent. In C++ a class with a rather simple interface may express the requirement above. 
class phase 
{ 
private: 
  ... 
public: 
  double G(double T, double p, double *x); 
  double H(double T, double p, double *x); 
  double S(double T, double p, double *x); 
  double Cp(double T, double p, double *x); 
  double V(double T, double p, double *x); 
  double alpha(double T, double p, double *x); 
  double kappa(double T, double p, double *x); 
} 
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The notation above states that there are some internal data structures (they should be described after 
the keyword private) that are unimportant for other parts of the library. What is of real importance is 

the external interface after the keyword public, that is, the functions to compute thermodynamics 
properties of the phase. 

The simplest approach to try to achieve our goal is to model Eq. (2.2) by some single master 
function, that is, to stick to some analytical expression for Eq. (2.2). For example, for some binary 
solutions the regular solution model can represent the Gibbs energy 

 Gm(T, p, x2) = (1 - x2)G
*

m,1 + x2G
*

m,2 + RT (1 - x2) ln (1 - x2) + RT x2 ln x2  

 + (1 - x2) x2 Σi (Ai + BiT + CiT ln T)(1 - 2x2)
i 

The difference among solutions is supposed to be in number of terms in the sum and in different 

values of interaction parameters, Ai, Bi, and Ci. If this equation would be enough for all the binary 
solutions, then the task of its software implementation has had been quite evident and easy. 

The simplicity of implementation in the case of a single master function comes from the fact 
that the internal data structures will be the same for all the phases. As a result, the thermodynamics 
properties can be executed by means of a call to the same functions. 

This can be done relatively easy in any language including procedural ones, for example in 
Fortran. Some problem with procedural languages along this way is that the syntax for a 

function/subroutine call will be a bit messy because it is impossible to separate internal data structures 
with external interface. For example, in C++ the class phase is employed as follows 
phase foo; //variable foo represents a particular phase 
cin >> foo; //foo is initialized from standard input 
foo.G(T, p, x); //computing the Gibbs energy 

In Fortran, this might be expressed as follows (assuming that the internal data structures are 

within array COEF 
C declaring internal data structures 
      DOUBLE PRECISION COEF(100) 
C initializing internal data structures from stream IN 
      INIT_COEF(COEF, IN) 
C computing the Gibbs energy 
      G(COEF, T, P, X) 

The main difference is that the internal data structures are hidden from the user in the case of 
C++ and they are exposed to everybody in the case of Fortran. Guess, what happens if for any reason 

it is necessary to change the internal data structures. In C++ the user should change nothing in his/her 
program, and in Fortran all the functions calls are to be rewritten. However this is another problem 
outside of the scope of the current paper, and I am not going to discuss it. After all, tastes differ. 

From what I have seen so far, the most advanced master function is developed in ThermoCalc 
[12] where it allows a user to employ regular, regular association and lattice model along the uniform 

way. Still, it is quite clear that a single master function approach imposes rather strict limits on the 
user. A single master function defines just subset of all the possible functions, and one can just hope 

that this subset is enough for thermodynamic modeling. If some new phase models are developed in 
the future that cannot fit in the Procrustean bedstead of the master function implemented in the 
particular software, then a user of this software is in trouble. Actually, even in ThermoCalc the 

number of master functions is more than one. 
The extreme case of the single master function approach is interpretation of the expression 

during the run-time. Note that interpreting removes almost all the limits imposed on the user, at least 
principally. Now he/she can enter any functional form for Eq. (2.2). 

When I have started working on this project, I thought that writing an interpreter is a nice 
opportunity to rely upon (see [13, 14]). After several tries, I gave this idea up for three reasons: 
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1)  Performance. If for simple cases the Gibbs energy can be expressed rather compactly, for 
multicomponent solutions it can take a page or even more. In order to interpret a very long 

expression effectively it is necessary to do something special. 

2)  Derivatives. Besides the Gibbs energy by itself, the user needs its first and second 
derivatives (see Eqs 2.9, 2.15 and 2.16). The approach with interpreting ordinarily means 

that derivatives should be taken numerically. This hits precision dramatically. In principle, 
the derivatives can be taken algebraically in the symbol form of by means of automatic 

differentiating but in the case of long expressions this seems not to be very practical. 

3)  Models with internal variables (Eq. 2.3 and 2.4). It is necessary to implement some 

internal solvers to deal with them. I think that it is the most problematic task to solve. 
Thus, working with several master functions at once seems to be inevitable because at the 

present time there is no an uniform thermodynamic model for all the phases. This means that it is 

necessary to deal with several sets of internal data structures, and computing the thermodynamics 
properties requires the use of several sets of functions. A typical approach within procedural 

languages is to introduce some variable describing the model employed, for example 
int code; 

Then, while implementing the functions for thermodynamic properties, one has to utilize a sequence 
of if and then statements 
double G(double T, double p, double *x) 
{ 
  if (code == 1) then 
  { 
  ..return G1(T, p, x); 
  } 
  else if (code == 2) then 
  { 
  ..return G2(T, p, x) 
  } 
  else if (code == 3) then 
  { 
  ..return G3(T, p, x) 
  } 
  ... 
} 

Along this way, the main problem is connected with the maintenance of the code in the future 
when new functions should be added to the implemented ones. If a user of the library decides that it is 

time to add a new model within the approach above, it would be necessary to insert changes in almost 
all the library. I would certainly hate this. I prefer not to touch the working pieces of the code 

because otherwise you never know what the consequences might follow. 
Object-oriented programming gives a better framework to handle this situation (see more 

complete discussion in [15]). In C++, a programmer can employ virtual functions. Now the class 

phase have in the private area just a pointer to the abstract class RefPhase and actually is a simple 

shell to the actual implementations (in other words, a smart pointer). 
class phase 
{ 
private: 
  RefPhase *bar; 
public: 
  double G(double T, double p, double *x) 
  { 
  return bar->G(T, p, x); 
  } 
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... 
} 

The class RefPhase  
class RefPhase 
{ 
public: 
  virtual double G(double T, double p, double *x) = 0; 
    //=0 shows that this functions is not yet implemented 
... 
} 

is declared abstract because it mere describes the interface required to implement and makes nothing 
by itself. As a result a user cannot declare a variable of this type. 

The main idea is that a user can derive new classes from RefPhase and to implement whatever 

internal data structures and functions for computing thermodynamic properties. For example, 
class solution1 : public RefPhase 
{ 
private: 
  ... //its own internal data structures 
public: 
  virtual double G(double T, double p, double *x) 
  { 
  ... //its own implementation for the Gibbs energy 
  } 
... 
} 

 
class solution2 : public RefPhase 
{ 
private: 
  ... //its own internal data structures 
public: 
  virtual double G(double T, double p, double *x) 
  { 
  ... //its own implementation for the Gibbs energy 
  } 
... 
} 

The most striking feature of this approach is that the example presented in the beginning of this 
section 
phase foo; 
cin >> foo; 
foo.G(T, p, x); 

does not change at all. For a library user everything is the same. The difference is tied with the 

question - which function will be called in the third line, foo.G(T, p, x): solution1::G(T, 

p, x) or solution2::G(T, p, x). Because the function is declared as virtual, this question 

will be solved at the run-time. If during input the pointer bar (private part of the class phase) is 

initialized as a pointer to the variable of the class solution1, then the function 

solution1::G(T, p, x) will be executed. If bar points to the variable of the class 

solution2, then the function solution2::G(T, p, x) is called. 

Now if a user writes the new solution model 
class solution3 : public RefPhase 
{ 
private: 
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  ... //the new internal data structures 
public: 
  virtual double G(double T, double p, double *x) 
  { 
  ... //the new implementation for the Gibbs energy 
  } 
... 
} 

nothing should be changed in the previously written code. 

new_ph.obj

phases.cpp apps.cpp

phases.obj apps.obj

apps.exe

new_ph.cpp

apps1.exe  
Fig. 2. Adding new model of the multicomponent solution under the object-oriented approach. 

 
This is illustrated in Fig. 2. Let us imagine that first we developed some solution models and 

programmed them in the file phases.cpp. Then we wrote some thermodynamic algorithms to 

work with in the file apps.cpp. After that, we compiled both files to produce object files 

phases.obj and apps.obj and then finally linked object files to obtain the executable 

apps.exe. Now we decide to add a new solution model and write it in the file new_ph.cpp. If 

everything was done under the object-oriented approach described above, then during addition of the 

new model nothing must be changed in the files phases.cpp and apps.cpp. The only 

requirement is that the new class should be derived from RefPhase. Actually, we do not have even 

recompile old files. All what is necessary is to compile the file new_ph.cpp and to link it with 

previously created object modules phases.obj and apps.obj. 

To conclude, I believe that the object-oriented approach allow us to build a library that will 

resemble a construction set and to make a job of thermodynamicist closer to playing LEGO (see Fig. 
3). 
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Fig. 3. I wish I had the same joy while doing thermodynamic modeling as my daughter playing 

LEGO. 
 

2.5. External Representation of the library objects: XML (SGML) 

Another important thing is the external representation of the library objects. The first priority 
here is to develop a portable format that would allow thermodynamicists to exchange their local 
databases among each other. The format should not be tied with a particular software but rather 

follow the general needs in thermodynamic modeling (see Sec. 2.1 to 2.3). Also, as was already 
mentioned, we should expect new models for multicomponent solutions to appear in the future. 

Therefore, the format should provide necessary means to accommodate this. Finally, it would be 
good if the format is intuitive and lucid for thermodynamicists. 

In my view, Extended Markup Language (XML) that is a subset of Standard Generalized 
Markup Language (SGML) gives a good framework to achieve these goals. XML allows us to create 
specific formal rules for a document markup. After that, the documents obeying these rules can be 

handled rather easily by computers. Moreover, these rules by themselves can be written formally in 
what is called by Document Type Definition. As a result, the documents written in XML can be 

considered to be highly portable. 
Probably, everyone already heard about Hypertext Markup Language (HTML) - the official 

language of documents on World-Wide-Web. However, not everyone might be aware that HTML is 
a subset of SGML. Actually, HTML is just a Document Type Definition in SGML. 

The general task of any computer format is to divide the content to the elements, and an 

element may usually comprise other elements. A computer program reading input should be able to 
find these elements and take appropriate actions. In order to make it possible, elements are separated 

by delimiters. As such, the role of any format is to introduce delimiters for all the elements. 
Within XML this task is solved by a single rule as follows. Each element is surrounded by two 

tags, for example 
<element_name> the element body </element_name> 

where each tag starts with the symbol "<", ends by the symbol ">" and contains the element name 
within. The difference between tags is in the symbol "/" preceding the element name in the ending tag. 
At first glance, this may look a bit awkward, but for a format designer this single rule gives complete 

freedom to formally describe any sophisticated relationships among elements. And after all, it is very 
simple. Another important property of SGML is that the starting tag can contain the element 

attributes, for example 
<element_name attribute1=value1 attribute2=value2> the element body 
</element_name> 
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This is very handy, because quite often there are some element properties that should become known 
to the software but for some reasons they can not be included into the element body. 

XML by itself do not almost impose limits on what elements should be introduced, which 
elements may contain what elements, what attributes the elements can possess. This is a task of the 

format designer who should develop the Document Type Definition. However, this is another 
question, and I will not go into further details because the two rules written above are enough for 
working with my library. Much more information on SGML are available on-line [16], and the 

complete description of SGML is in the book [17]. 
Let me explain this by means of a small example. The Gibbs energy of mixing of the Ba-Cu-Y 

ternary liquid melts can be described as follows 

 Gmix = Gideal + x1x2(-7191+3.363T) + x1x385960  

 + x2x3{v2(-120940+21.347T) + v3(-43980+8.133T)} 

where x1, x2, and x3 are mole fractions of Ba, Cu, and Y accordingly and v2 and v3 are some functions 
of the mole fractions. If the functional dependence is hard-programmed as a generalized polynomial 

within the software, the data file can contain something like as follows 
Liquid 
Ba Cu Y 
-7191 3.363 
85960 
-120940 21.347 -43980 8.133 

The general problem with data files as above is that later on it is quite difficult to remember 
which number stands for what coefficient in the model. It would be good if the data file were self-

descriptive (I think that from this perspective the ThermoCalc format for the Gibbs energy is the best 
so far). The best way to describe the place of the numbers is to keep the whole expression in the data 

file, for example 
Liquid 
Ba Cu Y 
Gid + x1*x2*(-7191 + 3.363*T) + x1*x3*85960 + x2*x3*(v1*(-120940 + 
21.347*T) + v2*(-43980 + 8.133*T)) 

Now there is almost no problem for a human being to read this file but unfortunately this 

cannot be said about computers. Remember that the goal is not to interpret this expression. The 
functional dependence is assumed to be hard-programmed, and the software still requires just 

numbers for input. The expression by itself is redundant and should be seen as text labels, which 
explain assignment of numbers to a person. Then, to find a middle ground, it is necessary to help the 

software. As a result, in my format the Gibbs energy of Ba-Cu-Y melts by means of SGML is written 
as follows 
<SimpleSolution class=phase id=Liquid> 
  <components> Ba Cu Y </components> 
  <IdealMixing class=FuncTpx> 
    +R*T*x(Ba)*log(x(Ba)) 
    +R*T*x(Cu)*log(x(Cu)) 
    +R*T*x(Y)*log(x(Y)) 
  </IdealMixing>  
  <Polynomial class=FuncTpx formalism=Muggianu> 
    +x(Ba)*x(Cu)*( 
      <func_x> + </func_x>  
      <Cp_zero class=func_Tp> 
        ( 
        <coef> -7191 </coef> + 
        <coef> 3.363 </coef> *T) 
      </Cp_zero>  
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    ) 
  </Polynomial>  
  <Polynomial class=FuncTpx formalism=Muggianu> 
    +x(Ba)*x(Y)*( 
      <func_x> + </func_x>  
      <Cp_zero class=func_Tp> 
        ( 
        <coef> 85960 </coef> + 
        <coef> 0 </coef> *T) 
      </Cp_zero>  
    ) 
  </Polynomial>  
  <Polynomial class=FuncTpx formalism=Muggianu> 
    +x(Cu)*x(Y)*( 
      <func_x> +v(Cu)* </func_x>  
      <Cp_zero class=func_Tp> 
        ( 
        <coef> -120940 </coef> + 
        <coef> 21.347 </coef> *T) 
      </Cp_zero>  
      <func_x> +v(Y)* </func_x>  
      <Cp_zero class=func_Tp> 
        ( 
        <coef> -43980 </coef> + 
        <coef> 8.133 </coef> *T) 
      </Cp_zero>  
    ) 
  </Polynomial> 
</SimpleSolution> 

If the entire markup is removed we receive the data file as in the previous example, but now, because 
of the markup, it is relatively easy to write the code to handle this. All the elements will be explained 

in the next sections. 
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3. Thermodynamicist Guide 

The TDLIB make should build the binary assess, which can handle a variety of 

thermodynamic tasks. This section presents the TDLIB library from the perspective of the assess 

user. The current assess functionality is limited. It contains just what I needed for my projects so 

far. So, if you need to solve a sophisticated thermodynamic problem, you might need to add 
functionality. However, as was mentioned in the Introduction, the TDLIB presents a framework or 

infrastructure when the new thermodynamic models and algorithms can be added with absolutely no 
changes in the previously written code. 

The binary assess is old-fashioned. It reads input text files and writes output text files. The 
responsibility of the user is to prepare input files and to process output files. In the current release, 
the TDLIB could produce the text files that you can just view or import into the plotting software of 

your choice and draw a graph. Also the TDLIB could create files, which are directly loadable to the 
Gnuplot (http://www.cs.dartmouth.edu/gnuplot_info.html, it is free software). As such, creating plots 

with TDLIB and Gnuplot is almost automatic. 
All the files for assess are plain ASCII files, and in order to create them you need a text 

editor, for example NOTEPAD. In my own work, I employ VIM (http://www.vim.org, it is free 

software). Besides other advantages, it has nice syntax highlighting feature (including SGML) that 
makes working with the files for the TDLIB a bit easier. 

The input files are pretty sophisticated. As was discussed, they are based on XML, and you are 
supposed to write the straight XML-like elements. It means that you need to have some 

programming experience. The main idea behind using XML is that this gives a solid background for 
the future development. In the future it would be rather an easy task to create the Graphic User 
Interface that deals with these files while providing the user the menu bar and different dialog boxes 

to work with the objects. Let us take an HTML as an example. Nowadays, almost nobody writes the 
straight HTML but rather people use GUI’s, even though the files created by the different GUI 

programs can be transferred all over the world due to the background HTML standard. 
Still, in the current release of the TDLIB there is no GUI, and you should be ready to work 

with the plain ASCII files. There are two main reasons. First, the current XML-like elements, 
developed by me, are not in the stable state. There are a lot of changes as compared with the 
TDLIB’99, and I expect a lot of changes in the future. It takes quite a time, in order to develop the 

language. Second, I do not like creating GUI. Personally, I am quite comfortable with console 
applications, even though I do not mind using GUI’s created by others. 

The library implements objects, shown in Table 3.1, that, in my view, are necessary for 
applications of chemical thermodynamics. In the present section, they will be described from the 
assess user perspective, that is, this means how the objects can be written in the file and what the 

user can do with them. 
Note that some objects are referred to as polymorphous. This means that they belong to the 

some category. Objects in the same category model the same concept, their behavior is similar and 
they can be used interchangeably. For example, all the phase objects model the Gibbs energy of the 

phase, Eq. (2.2) and you, for example, can freely change SimpleSolution to AssociatedSolution. The 
user can extend polymorphous category, if he/she is proficient in programming. As was discussed in 

Sec. 2.4, the addition of a new object type to the polymorphous category changes nothing the 
previously written code. 
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Table 3.1. Objects available in the TDLIB’00 

Category Objects Polymorphism Part of the 

library 

Unknown in the vector 

Θ 

coef no PHASE 

Chemical element elem no PHASE 
Chemical formula formula no PHASE 

Function in temperature 
and pressure (func_Tp) 

null_Tp, Cp_zero, Cp_const, 
Cp_BB2, Cp_BB2_ref, Cp_BB4, 
IVT_Tp, SGTE_Tp, ideal_gas, 

V_const, alpha_const, 
alpha_kappa_const, 

alpha_kappa_const2, 
compound_Tp, complex_Tp, 

calc_Tp 

yes PHASE 

Species species no PHASE 
Function in 

temperature, pressure 
and mole fractions 

(FuncTpx) 

NullFuncTpx, IdealMixing, 

Reference, RedlichKister, 
HochArpshofen, Polynomial 

yes PHASE 

N-component solution 

(phase) 

NullPhase, PointPhase, 

NumericalDerivatives, 
SimpleSolution, CuOx_plane, 
CuOx_ordered_plane, ApBq a, 

AssociatedSolution, 
associated_solution 

yes PHASE 

Algorithms PassThrough, PhaseProperty, 
reaction, PhaseEquilibrium 

yes TD_ALGO 

Transformation  

y = f(x1, x2, ..., xn) 

convert no TD_ALGO 

Intermediary between 

algorithms and other 
objects 

compute no TD_ALGO 

Objects, describing the 
computation of the 
array of numbers 

NullOutput, ComputeOutput, 
SeriesOutput, ResidualOutput, 
SpinodalOutput 

yes TD_ALGO, 
VARCOMP 

Creating output file OutputFile no TD_ALGO 

Residual (Eq. 2.32) residual no VARCOMP 

Statistical hypotheses 
(Eq. 2.35 and 2.36) 

series no VARCOMP 

Experimental series 
(Eq. 2.30) 

series no VARCOMP 

Global options globals no VARCOMP 
a This object is not currently available because at the last moment I have found some problem 

with its implementation. 
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3.1. Getting started 

There are several file types, which assess can read for input. Any project must contain one 

or more model files (.mod) where there should be description of the problem to solve and of the 

output to compute. Into the model files, one can place objects representing phases, algorithms to 
solve (phase equilibria) and output to make. Phase objects define the models for the phase Gibbs 

energies. Phase equilibrium objects define what phase equilibria should be taken into account and 
their properties in respect to Eq. (2.26). The output objects define what information should be 
computed to write to the file or to prepare for plotting with Gnuplot. The model files are the most 

difficult to prepare, because it is necessary to learn format for almost all the objects listed in Table 
3.1. 

The direct problem, that is, computing equilibrium properties for the given system, can be done 
by means of assess as follows 
assess model_file1[.mod] model_file2[.mod] … –o output_file 

where the user should specify which model files to process, and what base name should be given to 
the output files. Output objects, defined in the model files, should specify the extension that will be 

added to the base name output_file from the command line. As a result, the command will 

produce a number of files with the same name output_file but different extensions. If no output 

file is specified, all the output is done to the standard output. 
In order to solve the inverse problem the user should make the additional preparation. First, 

within the model files (typically within the Gibbs energies) it is necessary to declare unknowns in the 

form of 
<coef name=B unknown=1> 6.5 </coef> 

This specifies that the optimizer should take the initial value for the unknown under name B equal to 
6.5 and then it should find the better value by maximizing the likelihood function (Eq. 2.37). In order 

to make it happen the user should add to the model files the description of the residuals (Eq. 2.32) for 
each experiment and to prepare the data file (.dat) with the experimental values by themselves in the 

form of Eq. (2.30). Also, the user should take an expert decisions about the quality of the available 
experiments (statistical hypotheses) and to express them in the set file (.set). Roughly speaking, the 
set file defines the weighted matrix. 

Then, in order to run the inverse problem, one should type 
assess model_files –d data_files –s set_files –o output_file  

Here the program read the model files, the data files and the set files, then it starts maximizing Eq. 

(2.37). The vector of residuals ε is computed for the values in the data file in accordance with Eq. 

(2.32). fi(xij, zi; Θ) should be defined in the model file by means of the objects, representing residuals. 

The set files will be used to specify unknowns in the dispersion matrix D(ε)-1. After the optimization 
procedure stops, the program will compute the results, required by the output objects for the final 

solution obtained. 
Now, before going to boring details, let us consider two simple examples. 

3.1.1.  Simple data fitting – a linear regression (tdlib/ex/line - Ref. [8]) 

Let us start with the simplest case, not related to thermodynamics. Suppose, it is necessary to 

determine the parameters a and b from the several experimental according to 

 yij = a + b xij + εij 

This is a pretty primitive task, but this would allow you to understand the meaning of Eq. 
(2.35). This case is discussed in Ref. [8] where the special attention is paid to the comparison of the 
linear error model with the conventional least squares. 

In the directory tdlib/ex/line there are next files (see Ref. [8] for the discussion of pseudo-
experimental values and the results). 
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File Description 

ini.mod The model file 
line1.dat Six pseudo-experimental series, when the systematic errors are absent 
line2.dat, line3.dat, 

line4.dat 

Six pseudo-experimental series with systematic errors. The systematic errors 

increase from line2.dat to line4.dat 
ml.set The systematic errors are taken into account. The hypothesis σ2

r,i = σ2
r, γa,I = 

γa, γb,i = γb 
wls.set The ordinary least squares. The systematic errors are ignored. The hypothesis 

σ
2
r,i = σ2

r, γa,i = 0, γb,i = 0 

 
It is supposed there are results of six experiments {yij, xij} from which we would like to 

determine the parameters a and b. The pseudo-experimental series are in the .dat files in the form 

as follows, 
ser_i, 
line, 
y x, 
100 10, 
… 
140 20; 

While the pseudo-experimental values have been generated in the files line2.dat to line4.dat 

the shift and tilt systematic errors have been added to each series. 

The file ini.mod defines what assess should do with the experimental results. First, there 

is the residual object which computes ycalc = a + b xij and forms a residual yij - y
calc. Then goes the 

OutputFile object which directs to prepare a file with the extension xy to plot with Gnuplot. 

The command 
assess ini –d line1 –s ml–o l1_ml 

process the values from the line1.dat under the hypothesis defined in ml.set and produces 

several output files l1_ml.*. l1_ml.lst is the main listing, l1_ml.par is the file, containing 

the values of unknown parameters found, l1_ml.xy contains output of the OutputFile object. 

You can draw a Fig. 2a from Ref [8] by using the command 
gnuplot l1_ml.xy - 

These files and also the results of the next commands 
assess ini –d line1 –s wls –o l1_wls 
assess ini –d line2 –s ml  –o l2_ml 
assess ini –d line2 –s wls –o l2_wls 
assess ini –d line3 –s ml  –o l3_ml 
assess ini –d line3 –s wls –o l3_wls 
assess ini –d line4 –s ml  –o l4_ml 
assess ini –d line4 –s wls –o l4_wls 

are in the subdirectory out. They process all the pseudo-experimental sets under the two different 

hypotheses, and it is possible to see the difference between the conventional least squares method and 
the new approach. 

Note that the change to the more complicated models is very simple - you have just to change 
the function presented within the convert object. Because it does real interpreting it is possible to 

write down any function in the closed form within it. 
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3.1.2. The Ba-Cu binary system (tdlib/ex/bacu - Ref. [9]) 

There are two intermetallic compounds in the Ba-Cu system, BaCu and BaCu13. There are 
experiments on the enthalpy of formation of BaCu, the partial enthalpy of the melt, the liquidus 

temperatures as a function of the melt mole fraction, and the non-variant temperatures. 
In the directory tdlib/ex/bacu there are next files (see Ref. [9] for more details on the task in 

question). 
 

File Description 

sys.mod The description of the Gibbs energies 
alg.mod The description of the phase equilibria 

res.mod The description of the residuals to treat the experimental values 
h.out.mod The output to plot the partial enthalpies 
pd.out.mod The output to plot the phase diagram 

non.out.mod The output to print the non-variant points and the estimates of the melt 
spinodal 

expr.dat The experimental values, the data file (see Table 1 in [9]) 
ml.set The hypotheses for the recommended solution (solution ML in [9]) 

ml1.set The hypotheses for the solution ML1 in [9] (systematic errors are equated to 
zero, but the reproducibility errors are left unknown). This is the intermediary 
case between wls.set and ml.set. 

wls.set The weighted least squares assumptions. 

 

The sys.mod file defines four point phases, Ba_s, Cu_s, BaCu and BaCu13 and the binary melt, 
L. Note that the point phases are related to the one mole of atoms. The Redlich-Kister polynomial is 

employed to describe the melt (phase L). Then in the alg.mod file there are several objects, defining 
four mono-variant equilibria, Ba-L, BaCu-L, BaCu13-L, Cu-L, and three non-variant equilibria, Ba-L-
BaCu, BaCu-L-BaCu13, BaCu13-L-Cu. After that, in the res.mod file there are residuals for the 

enthalpy of formation of BaCu, the partial enthalpies of Ba and Cu in the melt, the liquidus 
temperatures and non-variant temperatures. 

There are three files with the output objects. First, h.out.mod prepares the plot in the Gnuplot 
format for the partial enthalpies, the second, pd.out.mod does the phase diagram. The third file prints 

in the text format the state of the non-variant points and the estimate of the melt spinodal 
respectively. 

The next commands 
assess sys alg res h.out pd.out non.out –d expr –s ml –o ml 
assess sys alg res h.out pd.out non.out –d expr –s ml1 –o ml1 
assess sys alg res h.out pd.out non.out –d expr –s wls –o wls 

will compute the three solutions for the Ba-Cu system according to the three different set of 
hypothesis. Each run will produce (see out subdirectory) the .lst file with the main listing, .par file 
with the new values of unknown parameters, and four files defined by the output objects (.pd, .h, .non 

and .mis). It is possible to plot the partial enthalpies and the phase diagram with the Gnuplot as 
follows 
gnuplot ml.h - 
gnuplot ml.pd - 

The main problem of the assessment, that is, how to choose the initial guess for the unknown 
parameters, is left without the discussion in this example, because the initial guess in the sys.mod 

corresponds to the solution recommended in [9]. 
You can try what happens when the initial guess in not that good. In the ini.par file all the 

unknowns are equated to zero, what means that the ideal solution and ∆G = 0 for the stoichiometric 
phases are employed as the initial guess. This is rather a rough initial guess. There is no a 
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straightforward answer how to come to the good initial guess. I would recommend to start the phase 
diagram optimization with the weighted least squared because at the beginning it is necessary to find 

some solution with the required topology of the phase diagram. And when the initial guess is rough if 
in addition to the unknowns in the Gibbs energy one puts unknowns to the variance components, then 

it will be no good. 
It is possible to supply the initial guesses from the .par file to the assess with the option –v. 

Because the Ba-Cu phase diagram is rather simple, the next command will give the desired solution 

without any additional tricks from the rough initial guess taken from the ini.par file 
assess sys alg res –v ini –d expr –s wls –o r1 

The solution r1 should be equivalent to the wls solution, obtained above. Now we can use 

this solution in order to try the more complicated statistical hypotheses 
assess sys alg res –v r1 –d expr –s ml1 –o r2 
assess sys alg res –v r1 –d expr –s ml –o r3 

The other strategies to generate the successful initial guess will be discussed in the Case Studies 
section. 

3.2. Describing phases. I. Simple objects in the PHASE library (tdlib/ex/phase) 

The main object in the PHASE library is phase. Actually, it is a category of the polymorphous 

objects, which represent the phase Gibbs energy, and each object within this category deals with a 
particular phase (solution) model. There are underlying objects (coef, elem, formula, 

func_Tp, species and FuncTpx) that are used to build the phase objects, and in order to 

understand the phase object we have to begin with the underlying objects. Unfortunately, it is 

impossible to show the examples of the underlying objects with the assess program directly – it 

works just with the phases. As a result, we will start with coef, elem, and formula objects. They 

are rather simple and they can be presented without the live examples. Then we will go to the 
PointPhase object and discuss with its help the func_Tp and species objects. After than, we 

will consider SimpleSolution object that is just a container for the FuncTpx objects. And 

finally, we will discuss other objects in the phase category. CuOx_plane is the lattice model for the 

two-component solid solutions of high temperature superconductors similar to YBa2Cu3O6+z, 
CuOx_ordered_plane is the lattice model for the two-component solid solutions of high 

temperature superconductors similar to Y2Ba4Cu7O14+w, ApBq is the lattice model to describe non-

stoichiometric compounds ApBq±x, and AssociatedSolution is a generalized association 

solution model. Once more, if you need to work with other solution models, not included in the 
library, you can do it if you can master programming in C++ (see the code and the Programming 

Guide if I will finally write it). 
The format for all phase models can be expressed generally in the next form 

<phase_model class=phase id=phase_id> 
… 
</phase_model> 

where the element with the name phase_model has two attributes. The attribute class has the 

same value (phase) for all the phase models, and it shows that the object phase_model belongs 

to the phase category. The attribute id is the phase identifier, and it is supposed to be unique within 

the phase namespace. Within the element, there goes the information specific for each phase model. 

The phase can be referenced from other object as follows 
<phase class=phase IDREF=phase_id></phase> 

where the phase_id is supposed to be defined previously. 

There are several numerical parameters that affects all the TDLIB library. They can be changed 

from the default values by means of the globals object. Below there are few of them with the 

default values related to the PHASE library. The others will be introduced later on. 
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<globals 
  DefaultT=1000 
  Defaultp=1 
  R=8.31441 
  FirstDerivativeStep=1.49012e-07 
  SecondDerivativeStep=6.05545e-05 
  GetNuTolerence=2.22045e-13> 
</globals> 

When a user does not specify the temperature and pressure, they will default to DefaultT 

and Defaultp. The universal gas constant is equal to R. When the derivatives are taken numerically 

the library employs FirstDerivativeStep and SecondDerivativeStep as a relative step 

values for the first and second derivatives accordingly. 
When it is necessary to determine the coefficients for the chemical reaction, TDLIB employs 

the algorithm, described in Ref. [7]. To this end, the linear system of equations based on the formula 

matrix is solved. If in the resultant vector some element by the absolute value will be less than 
GetNuTolerence, then it is considered to be zero. 

3.2.1. Object coef 

The object coef is a bridge between the PHASE and VARCOMP libraries. It represents a 

value that may need to be found during the inverse task (members of the vector Θ in Eq. 2.31). For 
the PHASE and TD_ALGO libraries by themselves (direct problems) it is enough just an anonymous 

form of coef 
<coef> numerical expression </coef> 

where within the element one can put any numerical expression, for example 
<coef> 44.5*3.5 + 5.67 </coef> 

which will be evaluated on input. Here one can use all the arithmetic operations (+, -, *, /, ^), 

functions (acos, abs, asin, atan, cos, exp, log10, log, sqrt, tan) and the constant R (by default R = 
8.31441). 

If we would like to optimize the value defined by coef from the experimental results, then it is 

necessary to add two attributes - the coefficient name, and flag, whether this variable should be 

optimized. Then the XML representation has the next format 
<coef id=variable_name unknown=flag_value> numerical expression 
</coef> 

The attribute id can take any string, and it shows the coefficient name that will be used by the 

optimizer. The variable_name should be unique within the coef namespace. The attribute 

unknown can be equal either 0 (false) or 1 (true). All the coefficients with the attribute 

unknown=1 are included in the vector Θ, and if unknown=0, then the coefficient is fixed and it is 

not changed during the solution of the inverse problem. The value of the attribute unknown as well 

as the value of the coefficient can be changed in the parameter file (.par). 
Examples: 

<coef id=La1 unknown=1> 3.5 </coef> 
<coef id=a unknown=0> 1.5347 </coef> 
<coef> 4.68 </coef> 

In the first example, the coefficient name is equal to La1, the variable should be optimized in the 

inverse task and its initial value is 3.5. In the second example, the coefficient name is equal to a, and 

the coefficient is fixed. The difference between the second and the third line is that the coef a will 

be listed in the .par file and the attribute unknown can be change from there. The third coef is 

not accessible by the optimizer at all. 
There are more features in the coef object, but they are unimportant for the PHASE library, 

and they will be introduced later on - in the VARCOMP library. 
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3.2.2. Objects elem and formula 

The objects elem and formula do not have a special SGML format because they can 

unambiguously be represented by a single token, that is, a string with no spaces. For example, 

CH3CH2OH and Al2(SO4)3 are considered to be valid chemical formulas. Note that it is possible to 
show a molecular structure in some extent by means of parentheses and repeated structural units. In 

addition to element names, formula can contain plus or minus to show the electron (its name is 

assumed to be "e"), "+" means e-1, "-" means e1, for example, C60+, F-. In my implementation it is 
allowed to add some comment to the chemical formula after the underscore symbol, for example, 

Al2(SO4)3_alpha. This allows us to describe several modifications of the substance, for example, 
C_diamond and C_graphite. 

The element index is represented by a double-precision number. This allows for such notation 
as Ba0.5Cu0.5 and Ba0.0714Cu0.9286, if this is desired. 

The formal description of the formula syntax can be expressed as follows (actually, there 

should be no spaces between the formula parts). 
formula: 
  primary 
  primary formula 
  formula + 
  formula - 
 
primary: 
  elem 
  elem double 
  (formula)double 

The chemical formula consists from chemical elements. Note that there is new ambiguity in 

terminology in the present paper: there is a chemical element and there is an XML element. The 
chemical element name is assumed to be one or two characters. The chemical element name is case 
sensitive. By default, one can use all the chemical elements from the Periodic Table. They defined in 

the file elem.cpp (see LIST_ELEMENTS). 
A user can define his/her own set of elements. Just put the SGML element elements at the 

beginning of the first .mod file. For example, 
<elements> 
A  100 
B  150 
C  50 
</elements> 

This defines that in all the formulas one can use three chemical elements only, A, B, and C. The 
numbers are equal to the chemical element masses. 

The order of chemical elements in the SGML element elements determines their sorting 

order. By default, the sorting order of chemical elements is equal to that accepted in Ref. [18]. For 

the program assess, the sorting order of the chemical elements almost does not matter. 

3.2.3. Object PointPhase (tdlib/ex/phase/pp) 

The object PointPhase models one-component solutions, that is, stoichiometric substances. 

As such, its Gibbs energy is a function in temperature and pressure only, G(T, p). In order to define 

it, we need a chemical formula and a function in temperature and pressure. In TDLIB the point phase 
is considered as a wrapper to the species object. For example, 
<PointPhase class=phase id=test> 
  <species> Y2O3 
  </species> 
</PointPhase> 
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In the directory tdlib/ex/phase/pp/ this is in the file ex1.mod. The file out.mod defines the 

output of thermodynamic properties of the phase test. If we give a command 
assess ex1 out 

we should see that in our case all the properties are equal to zero, because by default the function in 

temperature and pressure is equal to zero. 
A species as well as the point phase is an entity that can be characterized by a chemical formula 

and the Gibbs energy in temperature and pressure. However, there is a subtle difference between a 

species and a point phase. A point phase certainly contains one species. Yet, if we consider equilibria 
in solutions we might need some species, which do not have the corresponding point phases. As a 

result, TDLIB contains species, which could be used in any solution model, and point phases, which 
represent one-component solutions. 

Now let us see, how to define the function in temperature and pressure within the species 

object and then what other features the species object possesses. 

3.2.4. Objects in category func_Tp (tdlib/ex/phase/pp) 

The objects in category func_Tp shown in Table 3.2 represent the Gibbs energy as a function 

in temperature and pressure only, f(T, p) (for example, the Gibbs energy of a species). The 

relationship of f(T, p) with the Gibbs energy is that the derivatives of f(T, p) are considered to comply 
with Eq. (2.9), otherwise it can be an arbitrary function in temperature and pressure. 

Table 3.2. The description of the objects in the category func_Tp (pressure is assumed to be 

in atmospheres, po = 1 atm). 

Object Description 

null_Tp G(T, p) ≡ 0 

Cp_zero G(T, p) = a + bT (Cp = 0) 

Cp_const G(T, p) = a + bT + cTlnT (Cp = const) 

Cp_BB2 G(T, p) = a + bT + cTlnT + dT 0.5 (Cp = -c + 0.25dT -0.5 [19]) 

Cp_BB2_ref G(T, p) = Ho - SoT + a(T - To – Tln(T/To)) + 4b(T 0.5 - To 
0.5)  

(Cp = a + bT -0.5 [19]) 

Cp_BB4 G(T, p) = a + bT + cTlnT + dT 0.5 + eT -1 + fT -2  

(Cp = -c + 0.25dT -0.5 - 2eT -2 - 6fT –3 [19]) 

IVT_Tp G(T, p) = a + bT + cTlnT + dT 2 + eT 3 + fT 4 + gT -1  
(Cp = -c - 2dT - 6eT 2 - 12fT 3 - 2gT –2) [18] 

SGTE_Tp G(T, p) = a + bT + cTlnT + dT 2 + eT 3 + fT 7 + gT -1 + hT -9  

(Cp = -c - 2dT - 6eT 2 - 42fT 6 - 2gT -2 - 90hT –10) [20] 

ideal_gas G(T, p) = RTln(p) (V = RT/p) 

V_const G(T, p) = vp/po (V = v/po) 

alpha_const G(T, p) = veαT(p/po - 1) (V = veαT/po) 

alpha_kappa_const G(T, p) = ueαT(1 - eκ(1 - p/po)) (V = uκeαTeκ(1 - p/po)/po) 

alpha_kappa_const2 G(T, p) = (v/κ)eαT(1 - eκ(1 - p/po)) (V = veαTeκ(1 - p/po)/po) 

calc_Tp A simple interpreter for any G(T, p) in the closed form. 

complex_Tp A simple shell to combine two objects G(T, p) = G1(T, p) + G2(T, p). 

compound_Tp Contain a vector of func_Tp (classes within the vector must be in 

the hierarchy of simple_Tp) to work with compound functions in 

temperature and pressure. 
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Probably, there are too many objects in this category, and it would be possible to leave here 

less objects. The reason is that this is the first polymorphous category of objects I have created and it 
has been used extensively as a “shooting-range” to check how it works. 

In the directory tdlib/ex/phase/pp you will find files with the name after the func_Tp object 

which show you their syntax. The point phase is used as a shell to demonstrate how func_Tp 

objects works. The command as follows 
assess cp_const out 

will show you the results of the computation of the thermodynamics properties from the given 

func_Tp object. 

All objects func_Tp have the attribute class which has the same value, func_Tp, and it 

shows that this object belongs to the func_Tp category. 

The simplest object is null_Tp which represents the case when G(T, p) = 0. It is usually used 

as a stub when you have to place a func_Tp object but for some reason you want it to be equal to 

zero. Actually, ex1.mod is equivalent to null_tp.mod because in the first case the null_Tp 

object was added implicitly.  
The classes from Cp_zero to SGTE_Tp represents some special cases for G(T, p) when the 

mole volume is assumed to be zero (V = 0, see Table 3.3). The objects from ideal_gas to 

alpha_kappa_const2 represent special cases for some equations of state (Cp = 0, see Table 

3.3). The functions and their derivatives for these objects are hard coded. As a result, you can change 

nothing in the format of these elements but to change the values of coef objects within them. The 

main idea here is to make the file format self-describing. However, the text outside coef elements is 

considered by the software just as text labels, and there is absolutely no interpreting when the 
thermodynamic functions, associated with these objects, are computed. 

Two objects of different func_Tp objects might be equivalent from mathematical point of 

view, for example as in the case below 
<Cp_zero class=func_Tp> (  
  <coef> 10531 </coef> + 
  <coef> 348.5 </coef> *T) 
</Cp_zero>  
<Cp_const class=func_Tp> (  
  <coef> 10531 </coef> + 
  <coef> 348.5 </coef> *T+ 
  <coef> 0 </coef> *T*log(T)) 
</Cp_const> 

However there is some difference between them if we compare the computer resources required. The 
second object takes more RAM because it needs to reserve space for additional information. Also, 
computing in the second case can take a bit more time, because the computer might well take log(T) 

before multiplying it by zero. I think this depends on a compiler. 
The difference between Cp_BB2 and Cp_BB2_ref is in different meaning of the coef 

objects. The functions are equivalent between each other, as they can be transformed to each other 
with no loss of information. However, if we consider the inverse problem, then the unknowns which 

could be introduced will be different, and it might influence the numerical properties of the inverse 
problem. The same concerns the alpha_kappa_const and alpha_kappa_const2 objects. 

The object SGTE_Tp can deal with magnetic contribution as described in Ref. [20]. To this 

end, one can add three attributes Bo, Tc and pm to the object. For example,  
<SGTE_Tp class=func_Tp Bo=0.22 Tc=95 pm=0.28> 
… 
</SGTE_Tp> 
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The object complex_Tp combines any two func_Tp objects. This allows us to combine a 

function, describing the temperature dependence of the heat capacity, with another function, 

describing the equation of state. Run 
assess complex_tp out 

and compare the output with 
assess cp_bb2 out 
assess ideal_gas out 

The object calc_Tp is a simple interpreter in temperature and pressure. Its body could 

contain any function in temperature and pressure. Within the calc_Tp object one can use all the 

arithmetic operations (+, -, *, /, ^), functions (acos, abs, asin, atan, cos, exp, log10, log, sqrt, tan) and 
the constant R = 8.31441. Thus, calc_Tp can be used when your needs cannot be handled by 

special cases included in the library (see Table 3.3). Compare 
assess complex_tp out 
assess calc_tp out 

The output is the same, however the calc_Tp object does real interpreting. Note though, that 

because of interpreting the calc_Tp object takes more RAM, its performance is slower by several 

times and the first and second derivatives, listed in Eq. (2.9), are taken numerically. 

The last object compound_Tp is to deal with compound functions. It contains a vector of 

func_Tp objects. The T,p-plane is supposed to be covered by a grid of rectangles, described by a 

set of T,p-values as follows 

 
T1,p1 T1,p2 ... T1,pn 
T2,p1 T2,p2 ... T2,pn 
... ... ... ... 
Tm,p1 Tm,p2 ... Tm,pn 

 
and G(T, p) within each rectangle is assumed to be represented by a simple func_Tp object. The 

continuity of the whole compound function and its derivatives is up to the developer of the 
compound G(T, p) function. 

Run 
assess compound_tp out 

and compare the output with 
assess complex_tp out 

Finally, it should be mentioned that any func_Tp object could have an id attribute. Its value 

should be unique for the func_Tp namespace. Then this object can be referenced from other object 

as follows 
<func_Tp class=func_Tp IDREF=func_Tp_id></func_Tp> 

where the func_Tp_id is supposed to be defined previously. See file ex2.mod as an example. 

3.2.5. Object species (tdlib/ex/phase/pp/) 

As was mentioned above, basically a species should be a combination of two objects: 

formula and func_Tp. However, it is helpful to allow the use of Eq. (2.18) when the total Gibbs 

energy of the species is partitioned to the two parts, the Gibbs energy of some reaction (Eqs 2.19 and 

2.20) and the sum of the Gibbs energies (Eq. 2.21). Let me explain this with the next example, related 
to the point phases. Note that the same concerns the species in the solution. 

There are five stoichiometric compounds in the Cu-Y system, Cu6Y, Cu4Y, Cu2Y7, Cu2Y, and 

CuY. Hence, on order to describe the equilibria, one has to employ seven species for the seven point 
phases, five intermetallic compounds and two pure components, and accordingly seven Gibbs 

energies G(T, p)i (i lists all seven compounds). A typical thermodynamic ambiguity is that we cannot 
determine the absolute Gibbs energies, although this has no implications for computing the 
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equilibrium composition. As a result, two of seven Gibbs energies can be equated to arbitrary 
functions (their choices depend on the accepted reference states in the project), and this does not 

change equilibria computations. 
Eqs (2.18) to (2.21) allows us to introduce five reactions 

 p Cu + q Y = CupYq 

(the formation of intermetallic compounds from pure components). The five Gibbs energies of 
reactions are defined unambiguously because they correspond to change in the Gibbs energy, and, 

actually, all equilibria computations depend just on these reaction Gibbs energies. Still, it is useful to 
think about seven Gibbs energies (one species - one Gibbs energy). This simplifies many formulas in 

chemical thermodynamics. Then we can express all seven Gibbs energies by means of two arbitrary 
functions (the Gibbs energies of pure components, see Gref in Eqs 2.18 to 2.21) and five unambiguous 

reaction Gibbs energies (Gmix in Eqs 2.18 to 2.21). This would simplify significantly support of the 
database in the future. If we need to change the current reference state for any reason, then we have 
to change just the two Gibbs energies of pure components. The Gibbs energies of intermetallic 

compounds will then change instantly because of Eqs (2.18) to (2.21). 
Another reason for employing Eq. (2.18) is tied with inverse tasks. Here we need to put 

unknowns in the Gibbs energies of intermetallic compounds. Much better choice is declaring 
unknowns within the reactions Gibbs energies (Eq. 2.19 and 2.20) because this usually leads to a 

more stable numerical task. 
On the other hand, Eq. (2.18) is general. A user can always equate Gref to zero and, in the 

example above, define the seven Gibbs energies independently. Certainly, he/she must not forget 

about the thermodynamics laws, but this is another question. 
In order to describe the Eq. (2.18), one can put into the species object the SGML element 

ref_plane. The func_Tp object before the ref_plane element will mean Gmix, and the 

ref_plane by itself - Gref. By default, when the ref_plane element is absent, it is assumed that 

Gref = 0. 

The file species.mod in the directory tdlib/ex/phase/pp demonstrates the syntax. The file 
out2.mod shows how to retrieve the full property and the parts, ref and mix. The command 
assess species out2 

will show you how it works. 

The element ref_plane, if present, contains a list of pairs of numbers and species. Note 

that this is a recursive definition, because the species within the ref_plane can have their own 

reference planes. The recursion is allowed and supported by the library. 

If on input all the numbers before species are equal to zero or they are absent, then during the 
input the formation reaction of the current species from the components in ref_plane will be 

equated automatically. Otherwise, the correctness of the reaction is not checked. The example is in 
the file k2so4.mod. In order to see it, it is necessary to put the –m flag to the assess. For example, 
assess –m k2so4 

With this flag the assess rewrite the model file and you can see how it has interpreted the input. 

Note, that first while making output the assess writes the globals object. It will be discussed 

later on. 
The species could have an id attribute (see species.mod). In this case it can be referenced from 

the other objects, for example 
<species IDREF=Y2O3></species> 

This will work if and only if the species with the id equal to Y2O3 was already defined earlier.  

The namespaces for the species and phases are different. However, because the point phase is, 
after all, a species, the TDLIB features the automatic promotion of species to the point phase. This 

means, that if there is a reference to the phase 
<phase IDREF=ph1></phase> 
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and the ph1 is not found among the defined phases, then TDLIB will search the ph1 in the species 

namespace, and if it is found there, the point phase will be formed automatically from the species with 
id equal to the given one. 

 

3.2.6. Object SimpleSolution (tdlib/ex/phase/simple/) 

In general, the Gibbs energy for the simple solution models (for example, non-ordering 

solutions) can be represented as a sum over some functions in temperature, pressure and mole 
fractions 

 Gm(T, p, x1, ..., xC) = Σk fk(T, p, x1, ..., xC) (3.1) 

Typically, the functions on the right side of Eq. (3.1) are classified as Gref (Eq. 2.6), Gideal (Eq. 2.8), 
and Gexcess and Eq. (3.1) usually looks like as follows 

 Gm(T, p, x1, ..., xC) = Σi xi G
*

m,i(T, p) + Σi xi RT ln xi + Σk gint,k (3.2) 

where i = 1, ..., C, (C ≥ 2) and three terms correspond to Gref, Gideal, and Gexcess accordingly.  
In the current release, Eq. (3.1) and not Eq. (3.2) was chosen as the ground to model the Gibbs 

energy without the internal parameters, because it gives more freedom and flexibility. As a result, the 
object SimpleSolution is considered as a container for polymorphous objects in category 

FuncTpx which are used to model fk in Eq. (3.1). Thus, if you would like to create any new phase 

models without internal parameters, all you need in TDLIB is to program a new object in the 
category FuncTpx. In my understanding, Eq. (3.1) should handle all the cases here. 

The file ex1.mod in the directory tdlib/ex/phase/simple/ shows the empty 

SimpleSolution object for the fictitious binary A-B system, and the file out.mod describe the 

output of various properties. The command 
assess ex1 out 

will show that as expected the empty SimpleSolution object produces zeros for all the 

properties. 
Now let us see, how to define the function in temperature, pressure and mole fractions within 

the SimpleSolution object. Note that even if the example will deal with the two-component 

solution, there is almost no software limits on a number of components and a number of FuncTpx 

objects you could put within SimpleSolution object. You are just limited by the size of available 

RAM and the processor speed. 

3.2.7. Objects in category FuncTpx (tdlib/ex/phase/simple) 

In order to represent Gref TDLIB contains the object Reference. It allows us to work with 

some more general functions than Eq. (2.6). Let us discuss this with an example of the two-binary 

solution. Typically Gref here would be represented as 

 Gref = xA G*
m,A(T, p) + xB G*

m,B(T, p) (3.3) 

However, we could express xA = 1 - xB and receive 

 Gref = G*
m,A(T, p) + xB ∆G*(T, p) (3.4) 

or alternatively xB = 1 – xA 

 Gref = G*
m,B(T, p) + xA ∆G*’(T, p) (3.5) 

While Eqs (3.3) to (3.5) are equivalent in the mathematical sense, in the inverse problems when 

functions in temperature contain unknowns there might be a difference in numerical stability of the 
optimization problem. Here the transformation from Eq. (3.3) to (3.4) and (3.5) allows us to 

reparameterize the goal function, and if this leads to the less correlated unknowns, this would 
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improve the convergence. Also, in my view, the Eq. (3.4) or (3.5) more suitable to describe the solid 
solutions kind of ABP+z where the end members of the binary solution are ABP and ABP+1. 

As a result, the Reference object represents a general function as follows 

 Gref = Go(T, p) + Σi xi Gi(T, p) (3.6) 

where the sum is over an arbitrary set of the mole fractions of components. The files ref1.mod to 

ref3.mod represent Eqs (3.3) to (3.5) accordingly, and the next commands will show that the 

results are identical 
assess ref1 out 
assess ref2 out 
assess ref3 out 

It is possible to put several Reference objects. It is useful, for example, when it is necessary 

to define the ideal gas phase. The file ref4.mod shows how it could be done. 

Formally speaking, the Reference object contains pairs of func_x and species 

elements. The use of species allows us to model the Gibbs energy of pure component of the solution 

with the use of Eqs (2.18) to (2.21) (see also Section 3.2.5). 
The IdealMixing object models Eq. (2.8). If this object is left empty on input (see file 

ideal1.mod) it represents exactly Eq. (2.8). Again you can obtain the numerical properties with 

the command 
assess ideal1 out 

If you unsure how TDLIB will understand the input, it is always possible to use –m flag at the 

command line, for example 
assess –m ideal1 

and all the objects will be shown in a form which could be called a “canonical”. 

The IdealMixing object also allows us to work with some more general function than Eq. 

(2.8), namely with 

 Gideal = Σi bi xi RT ln xi (3.7) 

where bi are arbitrary numbers and the sum can be taken over arbitrary subset of the components. 

The file ideal2.mod demonstrates this possibility. 

There is a numerical problem associated with Eqs (2.8) and (3.7) concerning chemical 
potentials and partial entropies. The part in chemical potential associated with Eq. (3.7) is equal to  

 µideal,i = bi RT ln xi (3.8) 

and when the mole fraction is zero we have a negative infinity. What happens when zero or negative 

values are substituted for xi in Eq. (3.8) depends on a compiler. Borland C++ up to 5.02 did not like 
it. gcc in such a situation behaves in a more reasonable manner, for it uses “infinity” and “not-a-
number” values. Still, it is necessary to put in special efforts to handle this case in the library. The 

current decision is to use an idea which I have found in Ref. [27], that is, to change ln(x) at values of 
x less than eps to the next function 

 f(x) = ln(eps) – 1.5 + (x/eps)(2 – 0.5 x/eps) (3.9) 

The function above and its first derivative is continuous with the ln(x) and, at the same time, 

leads to the reasonable values when x is zero or less than zero. The TDLIB behavior is controlled by 
the two global parameters which are given below with their default values 
<globals 
  EpsForNegLog=1e-07 
  NegativeLog=1> 
</globals> 

When NegativeLog is equal to one the use of Eq. (3.9) is allowed and then EpsForNegLog sets 

the value of eps in Eq. (3.9). This simplifies the development of the thermodynamic algorithms 
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because now it possible to freely use the zero and even negative values of mole fractions. However, 
this decision has its backside, that is, if you need to compute the chemical potential of some 

component when its mole fraction is very low by default the values obtained might not be accurate. 
In order to see this effect, run the next commands in the directory 

tdlib/ex/phase/simple 
assess ideal1 outsmall 
assess neglog ideal1 outsmall 

In my own practice, I have encountered this backside few times when in order to proceed further I 

needed to change the default values of EpsForNegLog. In the future, this has to be done in some 

more intelligent way that would not require the human intervention. 

Gexcess is expressed as the sum over interaction terms, gint,k, including binary, ternary and so on 
interactions. The number of binary interaction terms is equal to the number of all the combinations 
between two mole fractions, xi1 and xi2, the number of ternary interaction terms is equal to the 

number of all the combinations among three mole fractions, xi1, xi2, and xi3, and so on. 
The binary interaction term in the binary solution can be generally expressed as 

 gAB = Σr ar(T, p) fr(xA, xB) (3.10) 

where ar(T, p) is some function in temperature and pressure, sometimes referred to as the interaction 
parameter, and fr(xA, xB) is some function in mole fractions, such that it is equal to zero for pure 

components. In the binary solution xA + xB = 1, and there are many equivalent forms of Eq. (3.10) for 
the same function fr(xA, xB). However, if we use Eq. (3.10) for the multicomponent solution directly, 

these equivalent form become different because here xA + xB ≠ 1. Several projection formalism have 
been introduced (see, for example, Ref [21]). The most famous are Kohler and Muggianu formalisms, 

described as 

 vi = xi/(xA + xB) (3.11) 

 vi = xi + (1 – xA – xB)/2 (3.12) 

accordingly, where i means A or B. In these equations one takes mole fractions xA and xB from the 
multicomponent system, and obtains the mole fractions vA and vB that should be used in the next 

equation 

 gAB = (xAxB)/(vAvB).Σr ar(T, p) fr(vA, vB) (3.13) 

Thus, Eq. (3.13) represents the binary interaction term in the general case for a multicomponent 
solution. In the case of the binary solution Eq. (3.13) is equivalent to Eq. (3.10). There are several 
choices for fr(xA, xB) (see, for example, Ref. [22]). The current release of TDLIB contains three 

objects, RedlichKister, HochArpshofen, and Polynomial to describe the most popular 

interactions. As for other polymorphous categories, a user, proficient in programming, can add new 

objects. The general polynomial can be modeled with the Polynomial object as 

 gAB= xAxB Σr ar(T, p) vA
rA vB

rB (3.14) 

where the user can employ arbitrary number of terms with arbitrary powers. Note that this includes a 

Borelius polynomial 

 gAB= xAxB Σr ar(T, p) vA
R-r vB

r (3.15) 

where r = 0, …, R, as a special case. 
Redlich-Kister polynomial is expressed as 

 gAB= xAxB Σr ar(T, p) (vA - vB)r (3.16) 

where r = 0, …, R, and Hoch-Arpshofen [23] polynomial as 

 gAB = (xAxB)/(vAvB).{Σr ar(T, p) (vA – vA
r) + Σq aq(T, p) (vB – vB

q)} (3.17) 
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where r ⊂ (2, …, R), and q ⊂ (2, …, R). Hoch and Arpshofen employed just two members In Eq. 
(3.17), so latter can be viewed as the generalization. Actually, one should not include all the members 

in both sums over r and q in Eq. (3.17), because in this case some members may become linear 
dependent. 

For the direct tasks, computing the equilibrium composition, Eqs (3.14) to (3.17) are 

equivalent, as one can transform them equivalently in each other. In the inverse task, this is not so. 
Because the basis functions are different (and so is the set of unknowns), their behavior also differs. 

The basis functions in the Redlich-Kister polynomial are close to the orthogonal ones, and this makes 
the optimization task somewhat easier. On the other hand, the Hoch-Arpshofen polynomial allows us 

to support the necessary topological behavior of the Gibbs energy more easily. The basis functions 
here have a nice feature: each function xA – xA

r is concave in the closed interval [0, 1]. This means 
that only the sign of ar(T, p) determines whether ar(T, p)( xA – xA

r) is convex or concave. If you add 

to this feature a statement, that the sum of convex functions is also convex, then it gives some 
additional power into the hand of the assessor. 

The M-ary interaction term of C-component solution is defined as the interaction between M 
from C components with their mole fractions expressed as xj, where the index j lists the mole 

fractions in the given set of M components. However, only the general polynomial (Polynomial 

object) allows us to easily generalize Eq. (3.10) to M-ary interaction term from the binary one. In this 
case, Eq. (3.14) takes the next form 

 gM-ary = (Πj xj) Σr ar(T, p) (Πj vj
nrj) (3.18) 

The sum in Eq. (3.18) is over any possible products of vj. The projections formalisms for the M-ary 

interaction term (Eqs 3.11 and 3.12) become 

 vi = xi/(Σj xj) (3.19) 

 vi = xi + (1 - Σj xj)/M (3.20) 

accordingly. 
All objects to represent interactions have a common attribute, formalism. The value of 

formalism set the projection formalism to NoChange, Muggianu, Kohler. The NoChange 

means vi = xi, as in the case when the order of interaction is equal to the number of components, M = 
C. If the order of interaction is equal to the number of components of the solution than the formalism 

on input is reset to NoChange because it takes less computational time. For RedlichKister 

objects the values NoChange and Muggianu are equivalent. If you unsure, how TDLIB 

understood your input, as was mentioned above, use –m flag on the command line and assess will 

produce the output of the model. 
The internal format of interaction objects mimics the mathematical expression, Eqs. (3.14) to 

(3.17). Each item is represented by a pair of SGML elements, The first, func_x, serves as a text 

label to show a power of the basis function, the second, which should be of the func_Tp category, 

describes ar(T, p). The user should indicate the names of the components, the projection formalism, 
and the items required. On input the order of the items can be in any order. 

As in the case of func_Tp objects, the representation of the mathematical expression in the 

format is done just to make the format self-descriptive, and this does not mean interpreting at run-
time. Eqs. (3.14) to (3.17) are hard-coded within the objects, hence, they have a good performance 

and all the derivatives (Eq. 2.16) are programmed in the closed form. 
The files rk1.mod, ha1.mod, ha1_.mod, and pol1.mod in the directory 

tdlib/ex/phase/simple contains the different interaction objects which describe the same 

mathematical function. However, because the type of the polynomial is different the numerical values 
of the coefficients are different. The file outfrml.mod produces the Gibbs energy for these objects 

under the different formalisms. If the sum of the two mole fractions, taking part in the interaction, is 
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equal to one, than there is no difference between the objects under any formalism. If the sum of these 
two mole fractions is not equal to one, than there is a difference. You can see it, if you type in the 

next commands 
assess rk1 outfrml 
assess ha1 outfrml 
assess ha1_ outfrml 
assess pol1 outfrml 

The files rk2.mod, ha2.mod, and pol2.mod demonstrate the same with a bit more 

complicated polynomial. Run the next commands 
assess rk2 outfrml 
assess ha2 outfrml 
assess pol2 outfrml 

to view it. 
The FuncTpx objects could have an id attribute. In this case it can be referenced from the 

other objects, for example 
<FuncTpx class=FuncTpx IDREF=id_value></FuncTpx> 

Finally, the library supports the NullFuncTpx object, which models the interaction term 

identically equal to zero. It is not very useful in thermodynamic applications, but it is helpful for 

internal tasks of the TDLIB library. 

3.2.8. Object CuOx_ordered_plane (tdlib/ex/phase/y247/) 

The CuOx_ordered_plane object was designed to work with the Y2Ba4Cu7O14+w (Y247) 

superconductor. Its structure is pretty similar to that of Y123 (see below) but the Y247 phase 

experimentally was not found in the tetragonal form. This allowed us to speculate that, in this case, 
the order parameter x is always equal to z/2, what corresponds to the case when the basal plane is in 
the completely ordered state. As a result, the Gibbs energy of the Y247 does not contain an internal 

parameter, and it can be expressed as 

 ∆oxG(T, w) = g1(T) + w g2(T) + w(1 - w)Σiai(T)(1 - w)i +  

 2 RT[w ln w + (1 - w) ln (1 - w)] (3.21) 

In the previous version of TDLIB this can not be handled by the polynomial model, and in 
order to work with Eq. (3.21), the CuOx_ordered_plane object was programmed. In TDLIB’00 

Eq. (3.21) can be expressed by means of SimpleSolution, and thus the 

CuOx_ordered_plane object can be considered as obsolete. It is left in the library just because it 

was already programmed earlier. 

The files plane.mod and simple.mod in the directory tdlib/ex/phase/y247/ 

displays how to represent Eq. (3.21) by means of CuOx_ordered_plane and 

SimpleSolution objects accordingly. The next commands 
assess plane outtd –o p 
assess simple outtd –o s 

will compute the various thermodynamic properties for the two objects to the two files, p.td and 

s.td. They should be absolutely identical, what can be checked by means of 
diff p.td s.td 

 

3.2.9. Object NumericalDerivatives (tdlib/ex/phase/y247/) 

While the solution model is programmed there are a lot of possibilities for mistakes. In order to 
simplify the debugging, the NumericalDerivatives object computes all the derivatives of the 

phase model numerically. The file num.mod in the directory tdlib/ex/phase/y247/ shows 
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the very simple syntax, and the file outnum.mod compares the hard-programmed and numerical 

derivatives. Run 
assess plane num outnum 
assess simple num outnum 

to see that the derivatives for the CuOx_ordered_plane and SimpleSolution objects was 

programmed correctly. 

 

3.3. Describing phases. II. Solution models with the internal parameters in the 
PHASE library (tdlib/ex/phase) 

For a solution model with internal parameters, TDLIB allows us to partition Eq. (2.10) as 

follows 

 Gm(T, p, x) = Gref{T, p, x} + Gmix{T, p, x, y(T, p, x)} (3.22) 

where the meaining of Gref and Gmix is changed a bit as compared with Eq. (2.5) for the simple 
solution models. Here Gref denotes the part of the Gibbs energy, which does not depend on internal 
parameters, and Gmix describes the part with internal parameters. Such a division permits us to 

optimize computations for the whole model. Also in Eq. (3.22) and below the subscript eq at internal 
parameters is omitted to simplify the equations. 

Then there are the two cases, with one independent internal parameter and many independent 
internal parameters accordingly. Let us start with the former. We have 

 Gm(T, p, x) = Gref{T, p, x} + Gmix{T, p, x, y(T, p, x)} (3.23) 

where y is determined by solving the non-linear equation 

 F(y; T, p, x) = 0 (3.24) 

The first derivatives of the Gibbs energy in the form of Eq. (3.23) can be found as 

 ∂Gm/∂z = ∂Gref/∂z + ∂Gmix/∂z + (∂Gmix/∂y)(∂y/∂z) (3.25) 

where z is T, p, or xi. The derivative for the internal parameter can be determined by means of the rule 
for the implicit derivatives 

 ∂y/∂z = - (∂F/∂z)/(∂F/∂y) (3.26) 

Thus, according to Eqs (2.9) and (2.16), Eqs (3.25) and (3.26) allows us to determine H, S, V, 
and chemical potentials for the solution model with one internal parameter given by Eq. (3.23). In 

order to determine other properties we need second derivatives of the Gibbs energy. However, 
because we already have the first derivatives, we could use them in order to numerically determine 

the second derivatives. That is, we have for the heat capacity 

 Cp = (∂Hm/∂T)num (3.27) 

where the subscript num shows that this derivative is taken numerically. As a result, we have to find 

numerically the first derivative of the property, computed from the Gibbs energy according to (3.25) 
and (3.26). This improves the precision if as compared with the numerical determination of the 

second derivative of the Gibbs energy directly. The step here is controlled by the global option 
<globals 
  IntVarStep=6.05545e-05> 
</globals> 

The similar equations can be written for thermal coefficients 

 ∂2Gm/(∂T∂p) = (∂Vm/∂T)num (3.28) 

 ∂2Gm/∂p2 = (∂Vm/∂p)num (3.29) 
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and for derivatives which are necessary to compute the partial enthalpies, entropies, and volumes, for 
example 

 ∂2Gm/(∂T∂xi) = -(∂Sm/∂xi)num (3.30) 

The partial heat capacities and partial thermal coefficients for the solution models with internal 
parameters are not supported in the current release of TDLIB, because these are the third derivatives 

of the Gibbs energy and, at the same time, the number of cases when they are needed is very low. 
Conventionally, Eq. (3.24) to find the internal parameter is obtained as follows 

 ∂Gmix/∂y = F(y; T, p, x) = 0 (3.31) 

Then the equations above can be simplified. The first derivatives of the Gibbs energy (Eq. 3.25) 

becomes 

 ∂Gm/∂z = ∂Gref/∂z + ∂Gmix/∂z (3.32) 

where z is T, p, or xi. This simplifies the computation of the H, S, V, and chemical potentials and 

hence allows us to change Eqs. (3.27) to (3.30) for the second derivatives of the Gibbs energy to the 
next ones 

 Cp = ∂Href/∂T + ∂Hmix/∂T + (∂Hmix/∂y)(∂y/∂T) (3.33) 

 ∂Vm/∂T = ∂Vref/∂T + ∂Vmix/∂T + (∂Vmix/∂y)(∂y/∂T) (3.34) 

 ∂Vm/∂p = ∂Vref/∂p + ∂Vmix/∂p + (∂Vmix/∂y)(∂y/∂p) (3.35) 

 ∂Sm/∂xi = ∂Sref/∂xi + ∂Smix/∂xi + (∂Smix/∂y)(∂y/∂xi) (3.36) 

When we have several independent internal parameters (Eq. 3.22), we have set of equation to 

determine them 

 F(y; T, p, x) = 0 (3.37) 

where F is a vector of equations and y is a vector of unknown parameters. Then Eq (3.25) is to be 

changed to 

 ∂Gm/∂z = ∂Gref/∂z + ∂Gmix/∂z + Σi (∂Gmix/∂yi)(∂yi/∂z) (3.38) 

Here, in order to determine the set of the derivatives ∂yi/∂z one has to solve a linear system of 
equations analogous to Eq. (2.14). 

If the equations to determine unknown parameters are obtained by equating the derivatives of 

Gmix over yi to zero 

 ∂Gmix/∂yi = Fi(y; T, p, x) = 0 (3.39) 

then, as in the case with one internal parameter, Eq. (3.38) simplifies to Eq. (3.32), and Eqs (3.27) to 
(3.30) to determine the second derivatives of the Gibbs energy will become 

 Cp = ∂Href/∂T + ∂Hmix/∂T + Σi (∂Hmix/∂yi)(∂yi/∂T) (3.40) 

 ∂Vm/∂T = ∂Vref/∂T + ∂Vmix/∂T + Σi (∂Vmix/∂yi)(∂yi/∂T) (3.41) 

 ∂Vm/∂p = ∂Vref/∂p + ∂Vmix/∂p + Σi (∂Vmix/∂yi)(∂yi/∂p) (3.42) 

 ∂Sm/∂xj = ∂Sref/∂xi + ∂Smix/∂xi + Σi (∂Smix/∂yi)(∂yi/∂xj) (3.43) 

TDLIB supports both cases to determine internal parameters, the conventional (Eqs 3.31 and 

3.39), and general, when equations to determine unknown parameters (Eqs 3.24 and 3.27) are 

considered to be arbitrary and not to be equal to ∂Gmix/∂yi. The latter seems to be unusual, but in my 
view, it still might be usefull. 
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Phases with the internal parameters might produce the debugging information, because in order 
to compute the Gibbs energy and the derivatives one first has to solve Eqs (3.24) and (3.27) 

numericaly. This feature can be turned on for a particular phase by means of the attribute debug in 

the XML element for this phase. However, if you would like to turn it on for all the phases at once, 
set the global option DebugPhase to 1, as follows 
<globals 
  DebugPhase=1> 
</globals> 

 

3.3.1. Object CuOx_plane (tdlib/ex/phase/y123) 

The CuOx_plane object represents a special case of the lattice model developed by Degterov 

and Voronin to describe the Gibbs energy of the YBa2Cu3O6+z (Y123) phase [11]. It can also be 

employed for other superconductors similar to Y123, that is, containing the basal plane CuO. 
According to the model, the Gibbs energy of the reaction 

 0.5Y2O3 + 2BaO + 3CuO + (0.5z-0.25)O2= YBa2Cu3O6+z (3.44) 

can be expressed as follows 

 ∆oxG(T, z, x) = g1(T, p) + g2(T, p)z + z(1 - z)Σiai(T, p)(1 - z)i-1  

 + (c2 - x2)Σibi(T, p)(1 - z)i-1  (3.45) 

 + RT[(c + x) ln (c + x) + (c - x) ln (c - x) + (1 - c + x) ln (1 - c + x)  

 + (1 - c - x) ln (1 - c - x) + z ln z + (1 - z) ln (1 - z)] 

where z is the stoichiometric index (0 ≤ z ≤ 1), c is short for z/2, x is the order parameter (0 ≤ x ≤ 
z/2), gi(T, p), ai(T, p) and bi(T, p) are some functions in temperature and pressure. The notation in 

Eq. (3.44) is the same as in Ref. [11], and it differs a little bit from the accepted in the present 
document. Hope that this will not bring forth a lot of confusion. 

The order parameter, x, is the internal parameter of the model. That is, for all the 
thermodynamic functions at equilibrium, we have just three independent variables, the temperature T, 

the pressure p, and the index z, because this phase is a binary solution. The value of x at any given T, 
p and z can be determined by minimizing Eq. (3.45) over x. This means that according to the notation 
above this model falls to the conventional solution models with one internal parameter (Eqs 3.31 to 

3.36). Then substituting the equilibrium value of x back to Eq. (3.45) we receive the equilibrium 
Gibbs energy 

 ∆oxG(T, p, z) = ∆oxG{T, p, z, xeq(T, p, z)} (3.46) 

This means, that even though we have Eq. (3.12) in the closed form, the computation of the 

equilibrium Gibbs energy and other thermodynamic properties is possible by numerical methods only. 
More details, including the computation of derivatives (Eqs. 2.9 to 2.16), are given in Ref. [11]. 

The XML representation of the CuOx_plane object, shown in the file y123.mod in the 

directory tdlib/ex/phase/y123, imitates Eqs (3.22) and (3.45). Gref in Eq. (3.22) is presented 

by the Reference object and then goes Gmix modeled by Eq. (3.45). As in the case of interaction 

objects, the imitation here is achieved by modeling each term in Eq. (3.45) by means of pairs of XML 
elements, func_x, a text label to describe the basis function in Eq. (3.45), and func_Tp to 

represent the function in temperature and pressure. The user can put in any number of terms with 

different types of func_Tp objects. On input, terms can follow in any order. 

File t.out.mod allows us to print various properties of the CuOx_plane object, for 

example the command 
assess y123 alg t.out –o prop 
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will write them to the file prop.t. Files x1.out.mod to x3.out.mod print smaller number of 

values that could be fitted in the screen. The next commands will compare the derivatives of the 

Gibbs energy computed by means of Eqs (3.32) to (3.36) with those computed numerically by means 
of NumericalDerivatives object.  
assess y123 alg x1.out 
assess y123 algnum x1.out 
assess y123 alg x2.out 
assess y123 algnum x2.out 
assess y123 alg x2.out 
assess y123 algnum x2.out 

There should be no difference except for the partial entropies and Gibbs energies when mole fraction 
is equal to zero and one. The explanation for this difference is tied with Eq. (3.9) employed by 

TDLIB by default. 
 

3.3.2. Objects AssociatedSolution and associated_solution (tdlib/ex/phase/ass) 

The objects AssociatedSolution and associated_solution represent the 

generalized polynomial association solution model. There are some problems with both of them. The 
former is the new implementation, and the latter is left from the TDLIB’99. The 
AssociatedSolution object is more general but however it is not 100% numerically stable if 

the number of associates is more than one. The associated_solution object employs the VCS 

subroutine, which code is published in [7], as the computational engine. It is much more numerically 

stable but it is limited in functionality and it is distributed in the binary form of access only because 

Prof. W.R. Smith does not want me to distribute the code of the VCS subroutine. 

I will start with some underlying philosophy, and then will give the examples and the more 
detailed description of the objects. 

The Gibbs energy of the associated solution is conventionally considered to have a form of Eq. 

(3.2). The difference is that the rank of the formula matrix (Eq. 2.1), C, is smaller then number of 
species, N, some of which in this case are referred to as associates. This means that the chemical 

reactions are taking place among species. The number of linear independent chemical reactions is 
given by the next equation [7] 

 R = N – C (3.47) 

Let us denote the mole fractions of species as yi, i = 1, ..., N. Then the original molar Gibbs energy of 
the association solution can be written as 

 Gm(T, p, y1, …, yN) (3.48) 

At equilibrium, we can describe the molar Gibbs energy of the solution by means of C 

independent components. Let us denote the mole fractions of components as xk, k = 1, ..., C. Hence, 
we can consider the solution either as containing C independent components, or as containing N 

species. Because this is the same solution, we can equate these two Gibbs energies 

 Gm(T, p, x1, …, xC) = n Gm(T, p, y1,eq, …, yN,eq) (3.49) 

However, in the general case, one mole of C components is different from one mole of N species, so 

we should multiply Eq. (3.48) by the total number of moles of the species, n = Σi ni, which are 
situated within the one mole of the solution formed by C components. Sometimes, it is more 

convenient to switch from the mole fractions of species, yi, to the numbers of moles, ni = n yi, and as 
a result we can write that 

 Gm(T, p, x1, …, xC) = G(T, p, n1,eq, …, nN,eq) (3.50) 
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The equilibrium numbers of moles in Eq. (3.50) can be found from the equilibrium criterion 
(see, for example, Ref. [7]), which lead us to the system of N non-linear equations as follows 

 xk = Σi aki ni (3.51) 

 Σi νij µi = 0 (3.52) 

The first C equations (Eq. 3.51, k = 1, ..., C) show the material balance between the independent 

components and the species. aki is the element of the formula matrix in which the species are 
composed from the independent components. The last R equations (Eq. 3.52, j = 1, ..., R) state that 

at equilibrium the change in chemical potentials should be zero for each chemical reactions. νij is the 
element of the stoichiometric matrix, and it shows the stoichiometric number of the i-th species in the 
j-th chemical reaction. 

Again, Eqs (3.50) - (3.52) should be considered as algorithm to compute the Gibbs energy of 
the association solution. First, for given T, p, x1, …, xC one has to solve the system of equations 

(3.51) - (3.52) for ni,eq, taking into account that ni ≥ 0, and then it is necessary to substitute the values 
found into Eq. (3.50). 

We have the special case of the ideal association solution when the excess Gibbs energy is equal 
to zero 

 Gexcess = 0 (3.53) 

in other words, when the chemical potentials of the species can be expressed as 

 µi = µi
o + RT ln yi (3.54) 

This case has very good mathematical properties because here the Gibbs energies (3.48) and (3.50) 
are convex, and one can prove that there is one and only one solution of the system of equations 

(3.51) - (3.52) within the admissible range ni ≥ 0. In addition, there are good algorithms available 

which can solve the system for all the possible cases with the automatic generation of the initial 
guess. As for me, for this case I really like the VCS subroutine from the Ref. [7]. 

In the general case of the polynomial association solution the situation is much worse. It is 
always possible to solve the system of equations (3.51) - (3.52) for a particular case, however I do 

not know the general algorithm, which could solve this system in any case with automatic generation 
of the initial guess with 100% guarantee of the success. One of the main problems here is that in the 
general case the system of equations (3.51) - (3.52) might have several solutions, each of them 

corresponding the local minimum within the admissible range ni ≥ 0, and, as a result, in this case it is 
necessary to switch to the problem of finding the global minimum. 

At this point, let us ask themselves why it is necessary to solve the system (3.51) - (3.52). The 
typical answer is that we need the equilibrium composition of associates. Then, let us ask the next 
question, whether the associates have physical meaning, that is, what are the proves, that they exist in 

the solution. Here, the answers vary. Some researches are confident that the associates do exist and 
they even try to determine their chemical composition by processing the experimental values under 

the either ideal of regular association model. Others just say that the association model takes into 
account ordering, and they are not that sure that the particular set of associates chosen to fit the 

experimental values has real prototypes in the solution. 
Personally, I share rather the extreme view that the introduced associates are just mathematical 

tricks to develop more suitable model for multicomponent solution. Well, associates do have some 

relationship with the real interactions within the solution, but I would say that the associates just 
some shadows of real interactions. 

From the viewpoint of mathematical description, it is roughly possible to compare the 
associated solution model with the splines. The idea is about the same - to divide the area to the small 

pieces in order to decrease the power of the polynomial, and along this way, the associates play the 
role of the spline nodes. If we accept this point of view, then we do not have to compute the 
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equilibrium composition of associates at all. If I say that associates do not have the physical meaning, 
I do not have to interpret yi,eq as equilibrium mole fractions, even though this was the initial way of 

thinking. 
As a result, the idea behind the new generalization of the polynomial associated solution model 

is to modify the original system of equations (3.51) - (3.52) in order to simplify the determination of 
its roots, that is, to change Eq. (3.52) to the next one 

 Σi νij µi
id = 0 (3.55) 

where the chemical potential is assumed to have a form of Eq. (3.54). Hence, the values of yi,eq are 
found as if the solution would be the ideal associated one. As was mentioned above, this task can be 

considered as good and one can expect no numerical problems here. 
Once again, in this case the associates are not considered as meaningful physical entities but 

rather a mathematical notation, and their mole fractions, yi,eq, found as the solution of the system of 

equation (3.51) and (3.55), are not considered as equilibrium ones. Now this is just a mathematical 
trick to develop a spline-like model. The background idea here is to change Alan Oates phrase “Let 

us put more physics to the CALPHAD models” to the “Let us put more mathematics to the 
CALPHAD models”. 

In order to make it possible to elaborate this idea, TDLIB should support the two 
implementations of the association model, the conventional one based on the system of equations 
(3.51) and (3.52) and the new one, based on the system of equations (3.51) and (3.55). 

As was mentioned above, the associated_solution object was taken from TDLIB’99. 

It relies just on the VCS subroutine, and as such, it can handle only the new model. Let us discuss 

determining the derivatives in this case. It is possible to derive the expressions for the first derivatives 
of the molar Gibbs energy (3.50) as follows (see Eqs 2.11 and 3.38). 

 (∂Gm/∂T)p,x = (∂G/∂T)p,x,n + Σi µi (∂ni/∂T)p,x (3.56) 

 (∂Gm/∂p)T,x = (∂G/∂p)T,x,n + Σi µi (∂ni/∂p)T,x (3.57) 

 (∂Gm/∂xk)T,p,x(l≠k) = (∂G/xk)T,p,x(l≠k),n + Σi µi (∂ni/∂xk)T,p,x(l≠k) (3.58) 

where (∂ni/∂T)p,x, (∂ni/∂p)T,x, and (∂ni/∂xk)T,p,x(l≠k) can be found as a solution of the linear systems of 
equations (3.59) - (3.60), (3.61) - (3.62) and (3.63) - (3.65) accordingly (see Eq. 2.14) 

 Σi aki (∂ni/∂T) = 0 (3.59) 

 Σi (νij/ni - ∆νj/n)(∂ni/∂T) = {Σi νij(Si
o - RT ln yi)}/(RT) (3.60) 

 Σi aki (∂ni/∂p) = 0 (3.61) 

 Σi (νij/ni - ∆νj/n)(∂ni/∂p) = -(Σi νij Vi
o)/(RT) (3.62) 

 Σi aki (∂ni/∂xl) = 1    (k = l) (3.63) 

 Σi aki (∂ni/∂xl) = 0    (k ≠ l) (3.64) 

 Σi (νij/ni - ∆νj/n)(∂ni/∂xk) = 0 (3.65) 

The second derivatives of the Gibbs energy can be found numerically (see Eqs. 3.27 – 3.30). 

It is useful to extract from the chemical potential of the species the part tied with the 
independent components as follows 

 µi = Σk aki G
*

m,k(T, p) + ∆µi (3.66) 

As a result the Gibbs energy of the associated solution can be written as 

 G(T, p, n1, …, nN) = Σi µi ni = Σk xk G
*

m,k(T, p) + Σi ∆µi ni (3.67) 
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The first part corresponds to the Gref in Eq. (3.22) and the second to Gmix. The format for the 
associated_solution object follows Eq. (3.67) and (3.22) when the Reference object 

models the first part and the SimpleSolution object surrounded by the internal_solution 

tags – the second one. The examples are in the tdlib/ex/phase/ass directory. 

The AssociatedSolution object is a more general replacement for the 

associated_solution object. First, with the difference with all the previous TDLIB objects the 

XML element AssociatedSolution is tied with several background C++ classes. The idea is 

that at the beginning the object is handled by the loader that determines the most appropriate 

numerical engine to use and gives the control to it. The two circumstances are taken into account in 
the present release: the number of independent reactions and the value of the equilibrated 

attribute. The latter controls the use of either the conventional model (Eqs. 3.51 and 3.52, if equal to 
one) or the new model (Eqs. 3.51 and 3.55, if equal to zero). For the ideal association solution the 

results should not depend on the value of this attribute. The number of independent reactions is 
determined by analyzing the formula matrix. If it is equal to one then the employed solver works very 
well. The only problem here might be the case when equilibrated=1 and there are several local 

minima. Then which minimum will be found depends on chance. The solver for the case with several 
independent reactions has not been worked out to the final stage yet. You have to expect to 

encounter the case when the convergence will not be achieved. 
The second generalization is the opportunity to use the SimpleSolution object both for 

the Gref and Gmix in Eq. (3.22) and (3.67). This gives the possibility to simultaneously employ 

interaction terms based on the internal mole fractions, yi, for the species in the internal solution and on 
the mole fractions of the independent components, xi. It means a great deal of flexibility within the 

same implementation. 
The third difference is tied with using the chemical variables as the internal ones. In this case 

the Eq. (3.51) is solved explicitly as follows (see Ref. [7] for details) 

 ni = ni,o + Σj νij ξj (3.68) 

where we have R independent chemical variables ξj as a replacement for the N linear dependent 

number of moles of the species in the internal solution. It simplifies both the determining the solution 
of Eq. (3.52) and the derivatives similar to Eqs. (3.56) to (3.58). 

The behavior of all the AssociatedSolution objects is controlled by a few global options, 

listed below. 
<globals 
  AssFactr=1000 
  AssM=10 
  AssPgtol=1.49012e-08 
  AssTolerance=2.22045e-14> 
</globals> 

The first three of them set the parameters for the subroutine LBFGSB employed as the 
numerical engine within this object in the case when the number of independent reaction is more than 

one. There description can be found within the file tdlib/lib/toms/lbfgsb.f. The 

AssTolerance option controls the minimum length of the admissible range for the chemical 

variable. If its length is less than AssTolerance, than this chemical variable is considered to be 

fixed. 
Finally, it should be mentioned that there is some sense to use associates ApBq in the form 

Ap/(p+q)Bq/(p+q) even this is not required by TDLIB. Some arguments can be found elsewhere in Ref. 
[25, 26]. 

In the directory tdlib/ex/phase/ass there are files demonstrating 

AssociatedSolution and associated_solution objects. The ideal.mod describes the 

simple ideal association solution with one associated complex, the interactions are added in the 
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reg.mod. The reg2.mod defines the regular association solution with two associates. The more 

sophisticated case is in the file bise.mod. It describes the ideal associated gas in the Bi-Se vapors. 

The files with the suffix old implement the analogous cases by means of the 

associated_solution object. The files from x.out.mod to x3.out.mod define the output 

of different properties. 

The commands as follows 
assess reg alg x1.out 
assess reg algnum x1.out 

will produce the output of the properties computed by the object itself and by numerical 

differentiation accordingly. You could see that the associated_solution object is working 

pretty good (it does not support partial enthalpies and entropies though) as well as the 
AssociatedSolution object in the case of a single independent chemical reaction. When the 

number of chemical reactions is more than one (files reg2.mod and bise.mod), than the 

AssociatedSolution object gives less reasonable results. First, there are some problems with 

convergence, second, there is a little bug in derivatives to compute the chemical potentials. It is 
necessary to put in it some more efforts. 

In the directory tdlib/ex/phase/ass/compare there are files to compare the 

conventional and new association models. In the file ass.mod there is a case with one associated 

complex when on the right side there is a positive interaction. This is sometimes useful in order in 

order to deal with the systems when there is a strong negative interaction in the liquid and at the same 
time there is a miscibility gap on either side of the associated complex. The next commands 
assess ass out –v ini –o t 
gnuplot t.g – 
gnuplot t.int - 

will plot the molar Gibbs energy with the chemical potentials and the internal mole fractions for both 

models. Then it is possible to increase the value of the parameter mis in the file ini.par and to 

see what happens. Note that the internal mole fractions for the new model do not depend on the value 

of the interaction parameter even though the Gibbs energy and chemical potentials do. When mis is 

greater than 100000 than there should be irregular behavior in both graphs for the conventional 
model. The reason is that here there are two solutions within the admissible range and the 

AssociatedSolution object takes either from these two possible solutions by chance. There is 

no such a problem for the new model because for it there is only one solution in the admissible range 

for all the possible values of the model parameters. 
 

3.4. Describing phase equilibria. Objects in the TD_ALGO library 

The main goal of the TD_ALGO library is to support the framework in order to develop 

thermodynamic algorithms. As such, there is a category algorithm in which a user can add new 

objects to implement new algorithms. The objects from the algorithm category communicate with 

the upper objects by means of the compute object, which is considered to be an intermediary layer 

with the goal to adjust the flow of the information between the upper object and the algorithm. 

The algorithm could have its own state, and in the inverse problem when the optimizer 

changes the values of unknown parameters, it is necessary to disclose this to all the algorithms. In 

order to make it possible, in the current release of TDLIB all the algorithms are required to have the 
attribute id - anonymous algorithms are forbidden. All the algorithms could also have the attribute 

debug. If it is equal to 1, then the algorithm might produce some information about its work. In 

order to turn on debugging at once for all the algorithms, set the value of DebugAlgorithm in the 

globals object to 1. 



 43

Another polymorphous category introduced in the TD_ALGO library is output. It is 

designed to describe the output in the abstract form of the two-dimensional array of double values 

when each column of this array is supposed to have a textual name. 
One of the purposes of algorithms is to produce output. The overall relationship between the 

objects in this case is as follows. The OutputFile object contains a vector of ComputeOutput 

objects from the output category. Each ComputeOutput object contains a vector of compute 

objects, which in turn contain the objects from the algorithm category. 

Let us see first, how it works with the example of the dummy PassThrough algorithm. Then 

the others, more meaningful algorithms, PhaseProperty, PhaseEquilibrium and 

reaction will be presented. 

3.4.1. Object PassThrough (tdlib/ex/algo) 

As was mentioned earlier, the algorithm is considered to be a black box that takes a set of input 

values, x and after the processing produces a set of output values, y. Each value in both input and 
output sets has a textual name by which it can be accessed by the upper object. 

The PassThrough is a dummy algorithm that just passes the input values to the output 

without any treatment. It can take any name on input and then it forms the value with the same name 

in the output set. 
The file pass1.mod in the directory tdlib/ex/algo demonstrate the simplest use of the 

PassThrough object. The compute object sets two input values within the PassThrough 

object and then just retrieves them. The file pass2.mod shows how to organize a loop within the 

ComputeOutput object, and finally the file pass3.mod demonstrate the conversion of the output 

values obtained by the algorithm by means of the convert object. Run 
assess pass1 
assess pass2 
assess pass3 

to see the results. 
 

3.4.2. Object OutputFile 

The OutputFile object is a simple container for the objects from the output category. It 

takes two-dimensional arrays of values from each output object and prints them to the output file 

with an extension specified by the attribute ext. There is an attribute format that controls the way, 

how the values are printed. By default, format = file that means that OutputFile prints first 

the names of the columns for the first output object followed by its two-dimensional array, then an 

empty line, and after that repeats this for all the output objects that it contains. If format = axum 

then all the columns with their names from all the output objects are printed side by side. If the 

length of some column is less than the others the non-existent values will be substituted by the text 
miss. Such a file can be easily imported to Axum for plotting. I would expect that other plotting 

packages ate this format either. 
The third option, format = gnuplot leads to the output file, which can be read directly by 

Gnuplot to plot a two-dimensional graph. Here the OutputFile object implies some additional 

information implicitly. The rules are as follows. All the output objects within the OutputFile 

object are plotted in the same graph but each of them is processed independently. The first column of 

the output object is treated as abscissa, all others as ordinates. The attribute ChangeXY in the 

output object changes abscissa and ordinate between each other for this output object. 
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3.4.3. Object convert 

Sometimes it is necessary to transform the set of values. To this end, the XML element 
convert has been developed. It implements an arbitrary transformation function in several 

variables, f(x1, ..., xN), evaluated on the fly by means of interpreting. The element by itself is as 
follows 
<convert name=name> expression </convert> 

where within the expression one can use all the arithmetic operations (+, -, *, /, ^), functions (acos, 
abs, asin, atan, cos, exp, log10, log, sqrt, tan) and the names of values available in the current scope. 

The scope depends on the place where the convert object resides. The attribute name sets the 

name of the output value; by default it is empty. If a name of some xi contains parentheses and/or 

comma, then it is necessary to surround it by the <str></str> tags. 

 

3.4.4. Object ComputeOutput (tdlib/ex/algo) 

This is the only object from the output category in the TD_ALGO library. Some others from 

this category will appear in the VARCOMP library. 
In its simplest form it is just a container for compute objects (see file pass1.mod). Here the 

compute object on its own supplies all the information to the algorithm. 

The alternative is to make a loop (see file pass2.mod). Here the start element sets a set of 

values as well as their names. All these values will be available on input for the compute objects. 

The finish element defines the stopping criteria. The allowable comparison operations are GE 

(greater or equal), EQ (equal), and LE (less or equal). The step element defines the actions to 

increment the values. Here the convert element can take all the names defined in the start 

element and assign the result to any value. 
In order to define the starting values and the stopping criteria, the start and finish 

elements in the ComputeOutput object might also have a compute object. It allows us to 

dynamically change the range in which values will be changed within the loop. It is important for 
drawing phase diagrams when it is necessary first to compute non-variant points and then to connect 

them between each other by mono-variant lines. The examples of these approaches can be found in 
the files tdlib/ex/bacu/pd.out.mod and tdlib/ex/bise/pd.out.mod. 

3.4.5. Object compute 

The compute object helps communicate upper objects (in the current release, these are 

ComputeOutput and residual) with the objects from the algorithm category. It takes on 

input a set of values from the upper object and sets the required values within the algorithm 

object. Along this way the compute object can translate names and convert the values to those 

required by the algorithm object. Also, the compute object prepares the set of output values to 

return to the upper object where it also could change the names of the values and make the 

conversions required. For example, the next object 
<compute> 
  <algorithm class=algorithm IDREF=s11_L></algorithm> 
  <input name=T> T </input> 
  <input name=x2> x(L,Se) </input> 
  <output> T </output> 
</compute> 

defines the communication with the s11_L algorithm. It says that on input the values of T and x2 of 

the upper object should be set as the values of T and x(L,Se) of the algorithm accordingly. On 

output it is necessary to obtain the resultant value of T with no changes. 
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Formally, the body of the compute object should contain the object from the algorithm 

category and then a list of XML elements input and output.  

Each XML element input contains the value in the algorithm to be set. The XML 

element input can have either name or value attribute. The attribute name defines the name of 

the value from the upper object to be taken. The attribute value allows the user to set the value of 

the algorithm to the given number. If the input element does not have neither attribute name nor 

value, it expects the convert object in the body, for example, 
<input><convert>t+273.15</convert> T </input> 

This means the value of T within the algorithm object should be equal to the given expression 

where the upper object should supply the value of t. 

The XML element input also can have attribute once, for example 
<input value=500 once> T </input> 

This means that this element will be applied to just once during the interaction of the upper object and 
the algorithm. For example, if this is encountered in the compute object within the loop of the 

ComputeOutput object, it will be applied just before the start of the loop. 

The SGML element output contains the values to retrieve and can have the attribute name, 

to translate the name, if necessary. By default, the name will be equal to the name of value from the 

algorithm. The algorithm might produce several values for a single output element but this 

is algorithm dependent. 
It is possible to put convert objects after the output elements. For example, 

<compute> 
  <algorithm class=algorithm IDREF=L></algorithm> 
  <input name=T> T </input> 
  <input name=x2> x(Te) </input> 
  <output> H_mix </output> 
  <output name=x1> x(Bi) </output> 
  <output name=x2> x(Te) </output> 
  <convert> H_mix/x1/x2 </convert> 
</compute> 

Here all output objects form a set of values that is considered as input for the covert elements. 

It is possible to place several covert elements in order to form a new set of output values. 

However, the rule is that if any convert object is present within the compute object, then its set 

of output values is formed by convert elements only. This means that in the example above the 

output of the compute object consists from only single entity. 
 

3.4.6. Object PhaseProperty (tdlib/ex/phase) 

The purpose of the PhaseProperty object is to provide access to the properties of the 

phase object. The examples of the PhaseProperty objects can be found in the directory 

tdlib/ex/phase where they were used to print the phase properties. Its body contains just the 

phase object to work with. It has the attribute DependentMoleFraction to specify what mole 

fraction should be computed from the Σixi = 1 constraint. This attribute could be equal to first 

(default), last, no or the name of the component. 

On input from the compute object, the PhaseProperty object allows us to specify T, p, 

and x(component_formula). On output it support a variety of values, shown in the next table. 
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Description Text string 

Temperature T 

Pressure p 

Mole fraction x(component_formula) 

All state variables (T, p, and mole fractions) state(all) 

Thermodynamic molar property (below any 
property is specified as Z) 

G, H, S, V, Cp, dVdT, dVdp 

Property modifier (in the form Z_modifier) full (default), ref, mix, ideal, excess 

Partial property Z(component_formula) 

Partial properties for all components Z(all) 

Value of internal variable internal(variable_name) 

Values of all internal variables internal(all) 

The stability of all the internal phases stable(all) 

The stability of the internal phases stable(phase_name) 

 

What properties does a particular solution model support and what is the meaning of the 
property modifiers depends on the implementation. 

 

3.4.7. Object PhaseEquilibrium (tdlib/ex/bise) 

In the current release of TDLIB, the PhaseEquilibrium object is the most advanced 

algorithm designed to compute the phase equilibrium. It contains the list of phases, which should 

exist at the equilibrium, and the division of the external variables to the groups according to the Gibbs 
phase rule, Eq. (2.28). 

Let us consider an example of the Bi-Se system (directory tdlib/ex/bise). There are six phases 
defined in the file sys.mod: L (a binary Bi-Se melt), s01 (solid Se), s10 (solid Bi), s11 (a 

compound Bi0.5Se0.5 with a wide homogeneity range), s23 (solid Bi0.4Se0.6), and s32 (solid 

Bi0.6Se0.4). The liquid L has a miscibility gap on the right from the s23 phase. This example is 

taken from Ref [30]. 

The file alg.mod defines the phase equilibria that are necessary to compute the phase diagram 

and they are employed in the file pd.out.mod to plot the phase diagram. Run the next commands 

to obtain the plot 
assess sys alg pd.out –o t 
gnuplot p.td - 

The file pd.out.mod contains the information, which could be called as the phase diagram 

topology. In principle in the direct problems, the files analogous to alg.mod and pd.out.mod 

could be generated automatically, because the molar Gibbs energies of the phases (file sys.mod) 

contain all the information to build the phase diagram. Unfortunately, in the current release of 
TDLIB, this functionality is not available. 

I use TDLIB primarily for the inverse problems, when it is necessary to find the unknown 
parameters within the Gibbs energy by means of fitting the experimental values. Here the only way to 

create the files kind of alg.mod and pd.out.mod is by hand because if you take the file 

sys.mod with an arbitrary values in the Gibbs energies than it would produce the phase diagram 

with quite a different topology than required. 

Let us start with two-phase equilibria. In this system, they describe the mono-variant lines. The 
simplest are the liquidus lines between point phases and the melt. For example, in order to describe 

the liquidus between s23 and L, one can define 
<PhaseEquilibrium class=algorithm id=s23_L> 
  <phases> 
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    <phase class=phase IDREF=L></phase> 
    <phase class=phase IDREF=s23></phase> 
  </phases> 
  <state status=dependent> x(L,Bi) </state> 
  <state status=constraint> x(L,Se) </state> 
  <state status=unknown> T </state> 
  <state status=HardConstraint value=1> p </state> 
</PhaseEquilibrium> 

The object above contains the element phases with the list of phases and a list of the state 

elements. The attribute status within the state element describes the status of external variables. 

Within the PhaseEquilibrium object it is possible to use temperature (T), pressure (p), and the 

mole fractions in the form x(phase_id,component_formula). 

The status dependent means that this mole fraction should be computed according to the 

constraint Σixi = 1. The status unknown declares that this variable is unknown in the system of 

equations (2.26). The values of variables declared as constraint or HardConstraint are 

assumed to be set before the beginning of the numerical solution of Eq. (2.26). Thus, the number of 
unknown elements is equal to the number of equation in (2.26), which is given by Eq. (2.24). The 

total number of constraint and HardConstraint elements is given by Eq. (2.28). In our 

case, we have one equation to be solved and thus we should set two other variables in this 

equilibrium. 
The difference between the constraint and HardConstraint variables is tied with the 

ability of the other objects to change their values. The value of the HardConstraint variable is 

set in the PhaseEquilibrium object and could not be changed by other objects. On the other 

side, the value of constraint is assumed to be set by the other objects, before they would like to 

obtain the solution of the system (2.26).  
The object above reflects the fact, that in the system in question, this equilibrium is considered 

to be mono-variant, that is, there is a line at the phase diagram, describing the possible points 

{x(L,Se), T}, which all correspond to the given equilibrium. The object defined above allows the user 
to set the mole fraction of the melt and then to compute the liquidus temperature. 

It is possible to define a different object for the same equilibrium 
<PhaseEquilibrium class=algorithm id=s23_L_2> 
  <phases> 
    <phase class=phase IDREF=L></phase> 
    <phase class=phase IDREF=s23></phase> 
  </phases> 
  <state status=dependent> x(L,Bi) </state> 
  <state status=unknown> x(L,Se) </state> 
  <state status=constraint> T </state> 
  <state status=HardConstraint value=1> p </state> 
</PhaseEquilibrium> 

when the user should set the temperature and then the object will compute the mole fraction of the 
melt. 

The miscibility gap is also the two-phase equilibrium. It is possible to define as follows 
<PhaseEquilibrium class=algorithm id=L1_L2> 
  <phases> 
    <phase class=phase IDREF=L></phase> 
    <phase class=phase IDREF=L></phase> 
  </phases> 
  <state status=dependent> x(L_1,Bi) </state> 
  <state status=unknown> x(L_1,Se) </state> 
  <state status=dependent> x(L_2,Bi) </state> 
  <state status=unknown> x(L_2,Se) </state> 
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  <state status=constraint> T </state> 
  <state status=HardConstraint value=1> p </state> 
</PhaseEquilibrium> 

Here again the pressure is considered as the constraint that can not be change in the other objects. 
The user should set the temperature and the object will try to compute two unknown mole fractions 
because in this case there are two equations in the system (2.26). Note that when a phase is listed 

several times in the phases element, it should be referred to as phaseid_phasenumber, for 

example, L_1 refers to the first liquid, L_2 to the second. 

Three-phase equilibria in the two-component system are considered to be non-variant, that is, 
in this case there should be no variables to set. For example, the object 
<PhaseEquilibrium class=algorithm id=s10_L_s32> 
  <phases> 
    <phase class=phase IDREF=L></phase> 
    <phase class=phase IDREF=s10></phase> 
    <phase class=phase IDREF=s32></phase> 
  </phases> 
  <state status=dependent> x(L,Bi) </state> 
  <state status=unknown> x(L,Se) </state> 
  <state status=unknown> T </state> 
  <state status=HardConstraint value=1> p </state> 
</PhaseEquilibrium> 

declares the three-phase equilibrium among s10, s32, and the melt. At the constant pressure there is 

just a point in the phase diagram, describing this equilibrium, and the above object allows the user to 

determine the temperature and the melt mole fraction for this point. Another example is the 
equilibrium among s23 and two miscible liquids. Here it is possible to compute the non-variant point 

with the next object 
<PhaseEquilibrium class=algorithm id=s23_L1_L2> 
  <phases> 
    <phase class=phase IDREF=L></phase> 
    <phase class=phase IDREF=L></phase> 
    <phase class=phase IDREF=s23></phase> 
  </phases> 
  <state status=dependent> x(L_1,Bi) </state> 
  <state status=unknown> x(L_1,Se) </state> 
  <state status=dependent> x(L_2,Bi) </state> 
  <state status=unknown> x(L_2,Se) </state> 
  <state status=unknown> T </state> 
  <state status=HardConstraint value=1> p </state> 
</PhaseEquilibrium> 

The number of unknowns is more than in the previous example because here there are more 
equations in the system (2.26). 

It is possible to declare the state variable as functional. This allows us to specify an 

expression in order to compute the value of this variable from the values of other state variables in 
the given PhaseEquilibrium object. In this respect, the status dependent can be considered 

as a special hard-programmed case of functional and in the example above instead of  
<state status=dependent> x(L_2,Bi) </state> 

one could write 
<state status=functional> 
  <convert> 1 - <str>x(L_2,Se)</str> </convert> 
  x(L_2,Bi) 
</state> 
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With this technique it is possible to compute the melting of the s11 solid solution as follows 
<PhaseEquilibrium class=algorithm id=Tms11> 
  <phases> 
    <phase class=phase IDREF=L></phase> 
    <phase class=phase IDREF=s11></phase> 
  </phases> 
  <state status=dependent> x(L,Bi) </state> 
  <state status=unknown> x(L,Se) </state> 
  <state status=dependent> x(s11,Bi) </state> 
  <state status=functional> 
    <convert><str>x(L,Se)</str></convert> 
    x(s11,Se) 
  </state> 
  <state status=unknown> T </state> 
  <state status=HardConstraint value=1> p </state> 
</PhaseEquilibrium> 

where the functional status gives us a means to define that at melting x(s11,Se) = 

x(L,Se). Note that in the case of the Bi-Se system this equilibrium is metastable for the s11 phase 

has the peritectic decomposition at lower temperatures. 
Another option is status=value that adds a value of some property of any phase from the 

PhaseEquilibrium object as an additional equation to Eq. (2.26). This allows us to put 

additional constraints and gives us more flexibility in setting up the system of equation to solve. The 
file tdlib/ex/algo/prop.mod demonstrates how by means of this feature to compute such a 

temperature when the entropy of the phase is equal to the given value. Run 
assess prop 

to see how it works. 
Now let us pay attention to the numerical behavior of the PhaseEquilibrium object, 

which is based on the LBFGSB subroutine from the NETLIB/TOMS library. It well might be that the 
object will not compute the result required. Actually in the two objects considered above there is 
ambiguity that will give undesired results for sure. This is the main difference of the 

PhaseEquilibrium object with the objects in the PHASE library, when the goal was to deliver 

numerically reliable objects even in the case of the models with internal parameters. The main reason 

is that there are many cases when the solution of Eq. (2.26) does not exist in principle for a given set 
of phases with the current values of unknown parameters. 

In order to enhance the chances for success, the user should set the bounds and initial estimates 

for the unknowns. To this end, one can use attributes lower and upper to set the bounds and 

value to set the initial estimate, for example 
<state status=unknown lower=800 upper=950 value=880> T </state> 

By default, the bounds for the temperature are PETmin and PETmax from the globals 

object and for the mole fraction the default bounds are 0 and 1. This causes ambiguity in the object 
with s23_L_2, defined above, when the melt mole fraction should be determined for the given 

temperature. The problem here is that there are two possible solutions from both sides of the s23 

phase. Run 
assess sys s23_l 

to see that in this case you can receive the solution from both sides in random. 
Then, in order to make it clear what the user wants, it is necessary to use bounds, for example 

<state status=unknown lower=0 upper=0.6> x(L,Se) </state> 

to show that the solution from the left side is required. This is implemented in the file s23_l2.mod 

and you can compare the results of the command 
assess sys s23_l2 

with above. 
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The object L1_L2 introduced above will also lead to undesired result. With high probability 

the user will receive the trivial solution, that is, x(L_1,Se) = x(L_2,Se), which always 

satisfies the equilibrium equation (2.26) in this case. Then, in order to exclude this case it is necessary 
to use bounds. The files mis.mod and mis2.out implement the cases without and with bounds. 

Run 
assess sys mis 
assess sys mis2 

and see the difference. 
One could expect more intellectual numerical behavior of the PhaseEquilibrium object, 

however in order to achieve it is necessary to develop specialized thermodynamic algorithms because 
there are many different cases, which require a special treatment. 

The object, presented in the current release, is designed mainly for the inverse problems when 
the topology of the phase diagram and the rough estimates of non-variant point are known, and when 
it is necessary to find the unknowns in the Gibbs energies, which will give the topology required. In 

this case, it should be not that difficult to supply the information on bounds and initial estimates to 
compute the phase equilibrium. 

There are three different cases. 
1)  Initial estimates are set for all the unknowns. 

2)  Initial estimates are set just for a part of unknowns. 
3)  Initial estimates are not set at all. 
Let us consider them in turn. Note that the bounds are always taken into account. 

The first case is the most recommended. Here, the object runs the numerical subroutine 
LBFGSB to solve the system (2.26) with the initial estimates supplied by the user. If the numerical 

procedure converges, that's it. If not, then the object computes Fmin (Eq. 2.29) for the initial user 
estimate and throws the exception with this value. This allows the upper object to employ Fmin as a 

penalty if required (see Eq. 2.33). 
Let us especially stress, that in the case of failure, Fmin is computed for the initial estimate 

supplied by the user and not for the values returned by the numerical subroutine. This is very 

important for the inverse problems when the Eq. (2.26) is solved as part of the optimization 

procedure - determining unknown parameters in the vector Θ in Eq. (2.31). This means that in the 

case of failure the residual computed by Eq. (2.33) corresponds to the case of so called "indirect 
minimization", and overall behavior can be formulated as follows. When there is a bad initial guess 

for the vector Θ and some phase equilibria are not computed (Eq. 2.26 has not been solved for the 

given vector Θ), the optimization procedure (minimization of Eq. 2.34) will try to change the vector 

Θ by means of "indirect optimization". The goal of "indirect optimization" is to minimize the values 

of Fmin (Eq. 2.33), that in turn means better description of the initial user estimates for equilibria. If all 
goes well, at some point the equilibria get eventually computed, and after that the optimization 
procedure will automatically switch to residuals (2.32), which correspond to the "direct 

minimization". 
In the second case, the solution of Eq. (2.26) performed in two steps. First, the object tries to 

find the best values of variables for which the initial guesses have not been supplied. That is, it tries to 
minimize Fmin (Eq. 2.29) when the values of variables for which the initial guesses have been given are 

fixed. Then the object releases all variables and try to solve Eq. (2.26). Again, if the numerical 
procedure converges, that's it. If not, then the object throws the exception with the value of Fmin (Eq. 
2.29) obtained in the first step. 

In the third case, the object tries to automatically generate the initial guesses which are 
necessary for the solution of Eq. (2.26). In the case of failure to solve the system (2.26), the object 

throws the exception with the minimal value of Fmin obtained during all the tries. I would not 
recommend this behavior for the inverse problems. 
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On input from the compute object, the PhaseEquilibrium object allows us to set the 

state variables specified as constraint, value or unknown. In the last case, it allows us to set 

the initial guess. In order to indicate that the initial guess for the unknown variable should be chosen 
automatically, it is necessary to set it to –1, for example: 
<input value=-1> T </input> 

On output the PhaseEquilibrium object support a variety of values, similar to those of 

the PhaseProperty object and shown in the next table. 

 

Description Text string 

Temperature T 

Pressure p 

Mole fraction for the given phase x(phase_id,component_formula) 

All state variables (T, p, and mole fractions) for 

all the phases 

state(all) 

Thermodynamic molar property (below any 
property is specified as Z) for the given phase 

G(phase_id), H(phase_id), 

S(phase_id), V(phase_id), 

Cp(phase_id), dVdT(phase_id), 

dVdp(phase_id) 

Property modifier (in the form Z_modifier) full (default), ref, mix, ideal, excess 

Partial property for the given phase Z(phase_id,component_formula) 

Partial properties for all components in the given 
phase 

Z(phase_id,all) 

The value of Eq. (2.29) fmin 

All the final values for equations (2.26) (should 

be close to zero) 

fmin(all) 

The final value for particular equation in (2.26) fmin(number) 

 

The PhaseEquilibrium has its own state. The attribute SaveSolution controls 

whether the solution of Eq. (2.26) found should be saved in this state (by default, SaveSolution 

= 0 and the current solution is not saved). It is possible to set SaveSolution on input from the 

compute object (see file pd.out.mod). After that, the solution from the previous computation is 

taken as the initial guess for the next one. If you set debug=1, you could see it in the debug output. 

Another attribute of the PhaseEquilibrium object, ThrowException controls whether 

the exception discussed above will be thrown. By default, ThrowException = 1, and the 

exception is thrown. If ThrowException=0, the object stops throwing exceptions, and in the case 

of non-convergence just returns the values, which have no physical meaning. 
There are global options for all the PhaseEquilibrium objects. They are listed below with 

their default values. 
<globals 
  PETmax=2000 
  PETmin=300 
  PETolerence=0.01 
  PEfactr=100000 
  PEiter=100 
  PEm=10 
  PEpenalty=0.1 
  PEpgtol=2.22045e-08 
  PEsmall=0.1 
  PEstep=1.49012e-06> 
</globals> 
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The values of PETmin and PETmax, as was mentioned above, set the default bounds for the 

temperature. The value of PETolerence is used to determine whether the system (2.26) has been 

solved. If the final Fmin (Eq. 2.29) is less than PETolerence, the system is considered to be solved. 

If not, the exception is thrown. The value of Fmin returned by the PhaseEquilibrium object in 

the case of failure is multiplied by the values of the attribute PEpenalty. Other attributes set the 

numerical behavior of the LBFGSB subroutine (see files lbfgsbss.cpp and lbfgsb.f in the 

directory tdlib/lib/toms/ for details). 

3.4.8. Object reaction (tdlib/ex/bise) 

Quite often, it is necessary to combine the results obtained in the different algorithm 

objects. To this end, the object reaction has been developed. Its primarily use was assumed to 

compute the property of the chemical reaction, but in the final state it can handle much more general 
computations. 

In the directory tdlib/ex/bise there are two example, reac1.mod and reac2.mod 

that will introduce this object. The first file shows how to compute the EMF of the reaction 

 2Bi(s) + 3Se(s) = 5Bi0.4Se0.6 

by means of the equation 

 E(T) = -(1/nF){5Gs23(T) - 2Gs10(T) - 3Gs01(T)} 

The second file computes the drop enthalpy of Bi0.4Se0.6 

 {H(T) - H(298.15)}/1000 

Run 
assess sys reac1 
assess sys reac2 

to see it in action. 

Formally speaking, the reaction object is a container for the compute objects. It takes on 

input any values from the upper compute object and just passes them to all the compute objects it 

contains. On output it supports just all textual string that means the combined set of output values 

from all the inner compute objects. 

3.5. Describing residuals. Objects and formats in the VARCOMP library 

The VARCOMP is the oldest library in the TDLIB. It was mainly written in 1994 when my 

programming style was pretty close to FORTRAN. The initial reason for what I have decided to 
switch to C++ was the need to support an array of pointers to functions in order to write the 
generous subroutine to compute the sum of squares. The FORTRAN (at least at those days) did not 

have this feature. Well, “A real programmer can write FORTRAN in any programming language” 
[28]. 

In the current release, I left the code mostly as it is. I have just added the changes to make 
VARCOMP compatible with the PHASE and TD_ALGO libraries, and some other improvements in 

the interface. As a result the code looks rather nasty. Still, it works. 

3.5.1. Object residual (tdlib/ex/bacu and tdlib/ex/line) 

The object residual is used to implement Eqs (2.32) and (2.33). The object takes the 

experimental point (2.30) on input and tries to estimate fi(xij, zi; Θ). If this was successful the residual 
given by Eq. (2.32) is returned, otherwise the exception is caught to implement Eq. (2.33). 

The residual object is based on the compute object. The idea is to take a set of 

experimental points (Eq. 2.30, the values of yij, xij, zi can go in any order), and to pass them to the 
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compute object as the input values. Then the first output value of the compute object is assumed 

to represent fi(xij, zi; Θ) the residual is computed as Eq. (2.32). 

The residual object can have several attributes. 

 

Attribute Meaning 
id identifier, by which it can be referred to in the data file 
yname the name of yij in the series 
xname the name of xij in the series (it affects only the use of Eq. 2.35) 
ScaleOfX this is necessary to implement the approach of the like compromise, 

described in Ref. [11] (by default, it is equal to 1) 

 

If for the series using this residual the variance σ2
b,i is assumed to be equal to zero, then the 

values of the attributes xname and ScaleOfX do not matter during the optimization. 

Let us consider several examples. 
<residual id=Cp23 
   yname=Cp 
   xname=T> 
  <compute> 
    <algorithm class=algorithm id=s23></algorithm> 
    <input name=T> T </input> 
    <output> Cp </output> 
  </compute> 
</residual> 

The object above describes the residual 

 εij = Cp,ij - Cp
calc(Tij) 

for the phase s23, that should be declared earlier. The experimental point is assumed to have 

columns Cp and T. 
 
<residual id=HL 
   yname=y 
   xname=x2> 
  <compute> 
    <algorithm class=algorithm id=L></algorithm> 
    <input name=T> T </input> 
    <input name=x2> x(Se) </input> 
    <output> H_mix </output> 
    <output name=x1> x(Bi) </output> 
    <output name=x2> x(Se) </output> 
    <convert> H_mix/x1/x2/1000 </convert> 
  </compute> 
</residual> 

This object describes the residual 

 εij = yij – {Hmix(Tij, x2)/(x1x2)}/1000 

The experimental point is assumed to have columns y, T and x2. 
 
<residual id=s23_L 
   yname=T 
   xname=x2> 
  <compute> 
    <algorithm class=algorithm id=s23_L></algorithm> 
    <input name=T> T </input> 
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    <input name=x2> x(L,Se) </input> 
    <output> T </output> 
  </compute> 
</residual> 

The object describes the residual for the liquidus temperature 

 εij = Tij – Tij
calc 

The experimental point is assumed to have columns T and x2. The object s23_L corresponds to the 

PhaseEquilibrium object, which is necessary to compute the liquidus. Note that in this case the 

experimental temperature is set as the initial guess to solve the Eq. (2.26) for the given mole fraction 
of the liquid. This means, that if the liquidus temperature could not been computed because the 

values of the vector Θ are too bad, the residual will be equated to Fmin, estimated at the experimental 

point, that, in turn, corresponds to the “indirect minimization”. 
 
<residual id=s11_L_s23 
   yname=T> 
  <compute> 
    <algorithm class=algorithm id= s11_L_s23></algorithm> 
    <output> T </output> 
  </compute> 
</residual> 

The object describes the residual for the non-variant temperature 

 εij = Tij – Tij
calc 

The experimental point is assumed to have a column T. In this case it is not necessary to set the 

experimental point as the initial guess to solve the Eq. (2.26). The initial values for both temperature 

and the mole fraction of the liquid should be set right in the object s11_L_s23 because they should 

be the same for all experimental points. 

3.5.2. Objects in the category output 

The VARCOMP library adds three simple objects to the output category, SeriesOutput, 

ResidualOutput, and SpinodalOutput. 

The SeriesOutput object allows us to add experimental series to the plot (see, for example, 

the file tdlib/ex/bacu/pd.out.mod). It contains the names of the series and may have two 

attributes, Residuals and AllPoints. The first specifies whether the original values should be 

plotted (Residuals=0), or the residuals (Residuals=1). The second – whether it is necessary 

to plot the experimental points marked as “outliers”. 

The ResidualOutput object simplifies plotting the recommended solution along with the 

experimental point (see tdlib/ex/line/ini.mod). In principle, all the recommended solutions 

can be done with ComputeOutput, but it might take more efforts than in the case of 

ResidualOutput. 

The SpinodalOutput object checks the binary solution for the miscibility gaps (see, 

tdlib/ex/bacu/non.out.mod). It has rather primitive capabilities, and it should be redone in 

the future. 

3.5.3. Describing experimental values (tdlib/ex/bacu/ and tdlib/ex/line/) 

A data file as well as a hypothesis file has a simple, not XML-based format. I developed it in 

1994 when I had no idea what the SGML is. 
A data file is written in the free format. White space is recognized as the word delimiter, so the 

identifies cannot contain spaces. The file consists from the experimental series separated by 
semicolon. Each series comprises a few fields separated by commas 
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series_name, 
equation_name, 
column_names, 
point1, 
point2, 
..., 
pointN; 

series_name is any identifier, by which this experiment will be referred to in the hypothesis file 

and in the listing. equation_name is a residual name which should be defined in the model files. 

column_names means one or a few identifiers separated by space. Their number determines a total 

number of experimental values in each experimental point. They also will be used in the residual 

object. point_i means one of a few double values separated by space. The number of values to 

read is equal to the number of column names. 

If the number of words in the fields series_name or equation_name is more than one, 

the only first is taken and others are ignored. If there are more values in the field point_i than the 

number of the column names, the extra values are ignored. If the number of values is less than that, 

the absent ones are initialized by zeros. Such rules permit you to write comments in the fields 
series_name, equation_name, and point_i. 

You can exclude either a series or a particular experimental point from processing. To this end, 
the symbol * can be placed in the data file. In order to exclude a series, put the symbol * before the 

series name, in order to exclude a point, put the symbol * in the beginning of the field point_i to 

exclude. It is also possible to exclude a series in the hypothesis file. 
Although points and series marked with * don't take place in the calculations, they can be 

presented in the listing and in the plots. 
In the current release, there are two optional additions to the format described above. First, it is 

possible to put a few elements  
<var name=name value=value></var> 

after the equation_name and before the comma, in order to describe the values, which were 

constant in this experiment. 
Second, it is possible to convert the experimental values on input (dimension conversion and so 

on). To this end, a few convert elements could be put before the column_names. Each element 

will be interpreted as a new column with a name given by the name attribute. Names of the old 

columns can be used freely within the convert object. 

3.5.4. Describing variance components (tdlib/ex/bacu/ and tdlib/ex/line/) 

In principle, the hypothesis file is optional, I am not quite sure that the default hypothesis can fit 
your needs. As a result, if you would like to obtain reasonable results, you have to prepare this file. 

The file describes the variance components described in Eq. (2.36). A more accurate statement 
that the file allows the user to state hypotheses on the reproducibility standard deviation  

 sr,i = sqrt(σ2
r,i) 

and on two ratios 

 sqrt(γa,i) = sqrt(σ2
a,i/σ

2
r,i), sqrt(γb,i) = sqrt(σ2

b,i/σ
2

r,i) 

The default hypothesis is that all the series are assumed to have its own reproducibility 

variances, σ2
r,i , but the same quantities 

 γa,i = γa, γb,i = γb 

that is, the number of unknown variance components is N + 2 (N is the number of experimental 
series). 
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The hypothesis file is written in the free format and contains the statements on the experimental 
series described in the data file. All statements must be finished by semicolon. 

The assess reads the statement on a particular series, modifies the hypotheses accordingly 

and continue reading next statements. The program starts the optimization with the only series from 
*.set files taken into account. 

The format of a statement on an experimental series is 
[*] ser_name, hyp_fl sri, hyp_fl sga, hyp_fl sgb; 

The symbol *, if present, means that the series will be ignored. ser_name is a name of the 

experimental series from the data files. All the words after the first one will be ignored until comma. 
hyp_fl is a hypothesis flag. sri is the initial value for standard deviation of reproducibility, sga is 

the initial value of sqrt(γa,i), sgb is the initial value of sqrt(γb,i). 

There are three choices for the hypothesis flag. The first is the characters # followed by a 

number from 0 to 29. This means that the variance component belongs to the i-th set with the same 
variance. The second is the character % which shows that the variance component is unknown but it 

has no relationships with variance components from the other series. This is for the degenerated 
cased when the number of unknown variance components in the i-th group is equal to one. Finally, 
the character * makes the variance component fixed (it will not be changed in the maximization 

procedure). 
For example, the next fragment  

series_1, #1 1, #3 0, #2 0; 
series_2, #1 1, #3 0, #2 0; 
series_3, #2 1, #3 0, #1 0; 
series_4, #2 1, % 0, #1 0; 
series_5, % 1, #3 0, #1 0; 
series_6, * 10, * 5, * 5; 

declares seven unknown variance components, 1) σ2
r,1 = σ2

r,2, 2) σ2
r,3 = σ2

r,4, 3) σ2
r,5, 4) γa,1 = γa,2 = 

γa,3 = γa,5, 5) γa,4, 6) γb,1 = γb,2, 7) γb,3 = γb,4 = γb,5. The initial value for the standard deviations is 1, for 
gamma’s – 0. The variance component for the sixth series are fixed. 

If you need just weighed least squares, you can write the hypothesis file as follows 
series_1, * 2.5, * 0, * 0; 
series_2, * 3.5, * 0, * 0; 
series_3, * 1.5, * 0, * 0; 
series_4, * 2.8, * 0, * 0; 
series_5, * 3.8, * 0, * 0; 
series_6, * 5.5, * 0, * 0; 

where all the variances of systematic errors are equated to zero, and some fixed values are entered for 

the standard deviations of reproducibility. 

3.5.5. Describing unknowns (tdlib/ex/bacu/ and tdlib/ex/line/) 

As was mentioned in the PHASE library, the objects might have a coef objects. The simplest 

form of the coef object is as follows 
<coef> 5 </coef> 

where the object is considered as anonymous. In this case it is considered to be unreachable from the 

optimizer. 
On the other hand, it is possible to put in an id and a flag to show whether this coefficient will 

be fixed during the optimization. 
<coef id=a unknown=0> 5 </coef> 
<coef id=b unknown=1> 10 </coef> 
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The difference between <coef> 5 </coef> and <coef id=a unknown=0> 5 

</coef> is that the optimizer is already aware of the coef a (even though it will be fixed), and 

the user can change the status of this coefficient in the par-files. 

We can put lower and upper bounds on the optimized coefficient, if optimizer can handle this 
information, for example 
<coef id=c unknown=1 lower=0 upper=10> 3 </coef> 

In the current release only LBFGSB subroutine could handle the bounds. Other optimizers will just 

ignore this information. 
Another possible attribute is scale. 

<coef id=c unknown=1 scale=10000> 0 </coef> 

It shows, as it name states, the scale of the unknown variable. The scaling is done the coef class 

itself and, as such, it does not depend on the optimizer. 
The next step is to reference the previously declared coefficient, for example 

<coef IDREF=c></coef> 

This allows us to declare the same unknown in the several places simultaneously. The namespace of 
coef is global to the whole application. 

There are cases when it is necessary to express that there is some constraint between 
unknowns. This can be handled in some extent with the use of the computed coefficients, for example 
<coef id=e computed> a + b </coef> 

where you can put in the body any expression, containing ids of unknown coefficients. 

Currently, the next rule is implemented. The namespaces of computed and unknown 
coefficients are different, and it is not possible to refer to the id of the computed coefficient within 

another computed coefficient. I do not like this rule, and probably it will be modified. 

Note that the computed coefficient could be referenced by means of 
<coef IDREF=e computed> </coef> 

 

3.5.6. Describing optimizers 

The algorithm for maximizing Eq. (2.37) under the linear error model given by Eq. (2.35) is 

described in Ref. [8]. It comprises two steps, iterated consecutively. First, the (2.37) is maximized 
over unknown variances at fixed parameters, and then the (2.37) is maximized over unknown 
parameters at fixed variances. The last step is the most crucial and it is equivalent, as it is shown in 

Ref. [8], to the minimization of the least squares. I have had very good results here with the ZXSSQ 
subroutine from the ISML library (http://www.vni.com/products/imsl/). Their implementation of the 

finite difference Levenberg-Marquardt algorithm is very robust and reliable. However, it is a 
commercial product and it is not included in the release. 

In TDLIB’00 you have a choice from three optimizers from NETLIB, tensolve (default), 

lbfgsb, and hooke. This could be set within the globals object as follows 
<globals> 
  <optimizer algorithm=tensolve 
    NBigIterations=5> 
  </optimizer> 
</globals> 

where the attribute algorithm sets the optimizer, the NBigIterations – the number of 

iterations over the two steps mentioned above. 
Each optimizer has its own options to set. Run 

assess -m 

to watch them. Their description can be found in the files tensolve.f, lbfgsbss.cpp and 

lbfgsb.f in the directory tdlib/lib/toms/, and in the file 

tdlib/lib/varcomp/hooke.cpp. 
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The hooke implements the famous Hooke and Jeeves algorithm and it could be used to 

proceed from the bad initial guess, because the subroutine does not use the objective function 

derivatives. However it might well take a lot of iterations to complete. 
The tensolve works reasonably well, provided the initial guess is not very bad. Note that 

you must scale the unknowns (by means of the attribute scale), in order to use tensolve 

successfully. Otherwise, the results are unpredictable. 
The lbfgsb is the only choice to take into account the bounds on the variable. However, the 

convergence is slow, especially if the problem tends to be ill-behaved. As tensolve, it also requires 

the scaling. 
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4. Case studies 

4.1. Fictitious A-B binary system from the ThermoCalc Parrot guide 

(tdlib/ex/tc_ab) 

The most famous software for computational thermodynamics is ThermoCalc [12]. I really like 
it. The most striking feature is that Bo Sundman created it in Fortran. And to achieve that kind of 

flexibility you have in ThermoCalc by means of Fortran is very, very sophisticated task. Cheers to Bo. 
In ThermoCalc there is a module Parrot for the inverse problems, and there is an example there 

to demonstrate how it works. In the directory tdlib/ex/tc_ab there are files to show how this 

example can be solved by TDLIB. If you have been working with Parrot than you can make the 
comparison. Below there is just a brief description of the problem. More details can be found in the 

ThermoCalc guide. 
There are primary bcc solid solutions for both solid A and B. They are described by the bcc 

solid solution with the miscibility gap. The solid B and its primary solid solution at higher 
temperatures undergoes bcc to fcc transformation. There is no miscibility gap in the liquid phase. 

There is a stoichiometric compound A2B, which melts congruently but at lower temperatures it 
decomposes to primary solid solutions. Below there is a phase diagram with the experimental points 
drawn by TDLIB. 
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Fig. 4. The phase diagram of the fictitious A-B binary system with the available experimental 

points. 
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Fig. 5. The enthalpy of mixing of the liquid melts in the fictitious A-B binary system with the 

available experimental points. 
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Fig. 6. The activity of B in relation to fcc in the liquid melts in the fictitious A-B binary system 

with the available experimental points. 
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For the liquid phase there are experimental enthalpies of mixing and the activity of the second 
component as shown in Fig. 5 and 6 respectively. The task is to determine unknowns in the Gibbs 

energies from the available experimental values. 
The Gibbs energies of the phases are defined in the file sys.mod. All three solution phases are 

modeled by the Redlich-Kister model (SimpleSolution object) as it was suggested in the Parrot 

guide. The number of unknown parameters is chosen also in accordance with the Parrot guide. Note 
the scaling of the unknowns. The file alg.mod defines the phase equilibria, which are necessary to 

describe the phase diagram shown above. Once more, in the inverse problem the file analogous to 
alg.mod can be made by hand only, because in the beginning we do not know the values of the 

unknowns. 

The available experimental values are given in the file expr.dat. The primary experimental 

results for the phase equilibria have been given in the weight percents, so in the file they are 

converted to the mole fractions. In the current release of TDLIB, the values in the non-standard 
dimensions should be converted to the standard ones. The way of converting is not very elegant, it is 

relatively low-level, but it is very flexible in nature. Another limitation of the current release is that 
the experimental point is possible to bind with just a single residual. As a result, when we have a tie-
line and it is necessary to form two residuals, the experimental points are duplicated (see series L3L 

and L3F for example). The file res.mod defines the residuals. It shows what calculations are to be 

done in order to compute the member of the sum of squares related to the given experiment. The file 
wls.set sets the weights. They are assigned the same values as in the Parrot guide. 

Finally, the file out.mod defines the output to be computed for the found unknown 

parameters. It describes how to create several files, listed in the next table. 

 
 

 
 

Extension Description How to watch the result (name 

is the name of the output given 
in the command line) 

pd The phase diagram with the experimental point 
(see Fig. 4) 

gnuplot name.pd - 

hmix The enthalpy of mixing with the experimental 

points (see Fig. 5) 

gnuplot name.hmix - 

act The activity of B with the experimental points (see 

Fig. 6) 

gnuplot name.act - 

g600, 
g1100, 
g1500 

The molar Gibbs energies of the phase at 600 K, 

1100 K, and 1500 K accordingly (see Fig. 7 to 
Fig. 9) 

gnuplot name.g600 – 

gnuplot name.g1100 – 

gnuplot name.g1500 – 
non Non-variant points. any text editor 
mis The spinodal estimates for the melt, bcc and fcc 

solutions 
any text editor 

 
The command 

assess sys alg res out –d expr –s wls –o r1 

will run the inverse problem described above with the initial estimates taken from the file sys.mod. 

I have put there the results pretty close to those obtained in the Parrot guide, so the command above 

produces the solution of the inverse problem without any problem, and we will consider it as the 
etalon. The result of this command can be found in the subdirectory out, and the plots are given in 

Fig. 4 to Fig. 9. 
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Fig. 7. The molar Gibbs energies of the phases in the fictitious A-B binary system at 600 K. 
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Fig. 8. The molar Gibbs energies of the phases in the fictitious A-B binary system at 1100 K. 
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Fig. 9. The molar Gibbs energies of the phases in the fictitious A-B binary system at 1500 K. 
 
 

 
Now let us discuss, how it would be possible to obtain the values of the unknowns in the real 

life, when we do not have initial guess. 
In any case we have start with some initial guess. The better it is, the more chances for the 

success. The file ini.par contains the initial guess chosen in the Parrot guide. We could try it with 

the command as follows 
assess sys alg res out –d expr –s wls –v ini –o r2 

It happens that the initial guess chosen in the Parrot guide is considered to be very good for the 
TDLIB because this command produces the same solution as r1 and you do not have go through all 

the steps described in the Parrot guide. Because of the trick to handle the phase equilibria when they 
are not computed (see Eqs 2.29 and 2.33 and the discussion in the section devoted to the 
PhaseEquilibrium object) the TDLIB finds the solution in this case at once. 

Let us try another initial guess that I would have chosen by myself. It is presented in the file 
ini2.par. The reason for this initial guess is as follows. The liquid is considered to be the ideal 

because the activity and the heat of mixing is not very far from the ideal behavior. The bcc and fcc 
both are supposed to have a miscibility gap. You should expect it, because there are two primary 

solutions, and this is pretty typical for the phase diagram shown in Fig. 4. The zeroes for the A2B 
compound are because I know nothing better to suggest. If you run the optimization starting from 
this initial guess 
assess sys alg res out –d expr –s wls –v ini2 –o r3 

then you should see that for the TDLIB this initial guess is considered to be good either. The result 

obtained is again the same as r1, even though it takes something longer to converge. 

Now let us take a really bad initial guess described in the file ini3.par. You will find the 

zeroes only there. It means that all the three solutions phases are considered to be ideal. This initial 
guess is much close to the real life case when you just do not know were to start. With the default 
setting, this case breaks TDLIB. If you run 
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assess sys alg res out –d expr –s wls –v ini3 –o p1 

the optimizer will stop the optimization procedure at the point when the most of the phase equilibria 

are not computed. Well, the trick implemented in the TDLIB works not in the 100% cases. It is 
necessary to make much more researches in order to come to truly “automatic optimization”. You 

must expect that in the real life cases the optimization at once is unrealistic at the current state of the 
art of the thermodynamic assessment. 

What could be done right now? There are several strategies that I employ in my own work. 
First strategy is described in the Parrot guide – “step by step optimization”. It is necessary to divide 
the experiments into the groups and to suggest of a sequence of partial optimizations. During them, 

the assessor comes to a relatively good initial guess, and then he/she performs the full optimization at 
the last stage. In the case in question, we could separate the experiments on the liquid 

thermodynamics (file l.set), then the experiments on equilibria between the liquid and the A2B 

phase (file a2b.set), the equilibria among the liquid, A2B and bcc (file bcc.set), and finally the 

equilibria including fcc (file fcc.set). The typical procedure is to fix all the unknowns but the 

liquid in the ini3.par file and to run  
assess sys alg res out –d expr –s l –v ini3 –o p1 

Then, fix the values obtained for the liquid and unfix the values for the A2B phase in the p1.par file 

and run 
assess sys alg res out –d expr –s l a2b –v p1 –o p2 

Now, unfix the values for bcc phase in the p2.par file and run 
assess sys alg res out –d expr –s l a2b bcc –v p2 –o p3 

After that, fix all the values but for fcc phase in the p3.par file and run 
assess sys alg res out –d expr –s l a2b bcc fcc –v p3 –o p4 

Finally, unfix all the values in the p4.par file and obtain the final result 
assess sys alg res out –d expr –s l a2b bcc fcc –v p4 –o p5 

The biggest problem with the approach above is that is not quite clear how to separate the 
problem. I can suggest no formal algorithm here. Try to meditate for a while. It really helps. 

Another approach is to play with the option  
<globals 
  PEpenalty=0.1> 
</globals> 

As it was discussed earlier, when the phase equilibria is not computed the 
PhaseEquilibrium object returns Fmin multiplied by PEpenalty. When the initial guess is bad, 

this product is big and it mostly influences the steps made by the optimizer. During these steps the 
optimizer comes to such a point from what it can not move further. 

There are three files, p01.mod, p001.mod, and p0001.mod, which set this option to 0.01, 

0.001 and 0.0001 accordingly. Now try the next commands with the original ini3.par file when 

all the unknowns are unfixed 
assess p01 sys alg res out –d expr –s wls –v ini3 –o q1 
assess p001 sys alg res out –d expr –s wls –v ini3 –o q2 
assess p0001 sys alg res out –d expr –s wls –v ini3 –o q3 

You should see that the third try produces the solution the same as the original r1. So, in this 

case this approach helps to come to the final solution at once even from rather a bad initial guess. 
The problem here that it does not work all the time. In many cases the smaller values of the 

penalty leads to the solution when some equilibria are still not computed but because of the small 
penalty the optimizer ignores this fact. 

Final approach is to try the hooke optimizer. Let us consider the solution q2 obtained above. 

It gives the reasonable topology of the phase diagram, all the phase equilibria are computed, but the 

description of the right side of the phase diagram is rather bad. Still, the default tensolve 

optimizer can not make a move from this point because it is gradient-base. If we run hooke at this 
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stage it will help us to make a move, and then we can receive the final solution starting tensolve 

again. Run the next commands to see it 
assess hooke sys alg res out –d expr –s wls –v q2 –o q4 
assess sys alg res out –d expr –s wls –v q4 –o q5 
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5. Information for programmers 

Just key points for my library are described below. I would suggest you first read carefully this 
document and run examples in order to understand the whole design. Then have a look at the code. 

There are a few comments in the files, however knowledgeable people say, "A real programmer does 
not need comments - a code is obvious" [28]. 

The library is written in C++. In this release, I have switched from Borland C++ 5.01 to gcc 

2.95.2 compiler. I have not tried to port it to other compilers. If your compiler is not gcc, then you 
have to pay a special attention to the next things. 

1) A string class in gcc supports copy-on-write technique. It means that in the next code 
string a="a very long string" 
string b; 
b = a; 

the assignment b = a is considered to be a fast operation and it does not require a new memory. If 

this is not the case in your compiler then the TDLIB will be slower while doing input. 

2) There is some Fortran code to compile. You have to compile it and to link it with C++ code. 
In gcc it could be done with no problem. 

3) There is some f2c'd code (converted from Fortran to c with f2c, 
http://www.netlib.org/f2c/). It requires the f2c run-time library. It is included in gcc as 

g2clib. Also these files require the header g2c.h (in gcc f2c.h from f2c is renamed to g2c.h). 

I am working under Cygwin (http://sourceware.cygnus.com/cygwin/) under 

Win32. The filenames here are case-insensitive, so I might miss to check this carefully. 

The library is copyrighted by myself and available under the GNU General Public License 
(version 2 or later). The main idea behind the GNU General Public License is to allow for the widest 

free distribution of the library (free means freedom, not price). You can find the library at my 
homepages, http://www.chem.msu.su/~rudnyi/tdlib/. 

Still, there are some more legal problems because my library relies on other libraries, but they 

are distributed under their own conditions. Thus, you have to read all the licenses carefully to 
understand your rights. 

Basically, if you are making research you can use all the libraries for free without a problem. If 
you are going to develop the commercial software, you might be out of luck. Actually, you can do it 
legally, but first read the GNU General Public License. It imposes certain limits on the distribution of 

the commercial software. Second, check the licenses for supplementary libraries. You may need to 
pay to their authors. 

All of the libraries are included in the distribution for your convenience. According to their 
licenses, they can be distributed for free. Whether you can use them or not legally, this is another 

question. 
The table below summarizes all the libraries employed in TDLIB. 
Sometimes, I needed to make some changes to the supplementary libraries. It is was necessary 

either to compile them, or to convert from Fortran to C++ (small editing after f2c), and sometimes to 
correct the errors. All such cases are documented within the corresponded source code (search for 

the string "EBR" within the code). 
The make from tdlib/lib should copy necessary headers to tdlib/include, build all 

the libraries and put the binaries to tdlib/bin, and finally to build assess, which will also be 

placed to tdlib/bin. 
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Library Source, comment License 

phase mine GNU Public License 

td_algo mine GNU Public License 

varcomp mine GNU Public License 

callback Internet, employed to call a user 

function from numerical 
subroutines 

free (read the license) 

f2c netlib/f2c, a header that I have not 

found in gcc 

free (read the license) 

lapack and blas netlib/lapack, linear algebra free (read the license) 

minit Internet, linear programming 
solver 

free (read the license) 

toms netlib/toms, numerical solvers free for research (read the license) 

 
In the tables below there are lists of files from my libraries with small comment on what you 

will find there. The files go in the order, in which I would recommend to get acquainted with them. 
 
The files in the PHASE library 

file Classes description 

general.h and 

general.cpp 

gError, CanNotCompute, CheckInf, 

PutTab, ObjToString, limits, global, 
StateTp, StateX, FirstDerivative, 
SecondDerivative, MixedDerivative, 

instringstream, SGML, parser 

Some definitions and small 

objects employed throughout 
the library 

calc.h and calc.cpp calculator A simple interpreter 

coef.h and coef.cpp coef, CalculatorWithCoefs Unknown parameters to be 
determined in the optimizer 

elem.h and elem.cpp elem Chemical element 
formula.h and 
formula.cpp 

MolecularFormula, formula Molecular formula and 
chemical formula 

func_Tp.h, 
func_Tp_imp.h, 

func_Tp.cpp 

Ref_func_Tp, func_Tp, simple_Tp, 
null_Tp, Cp_zero, Cp_const, 

Cp_BB2, Cp_BB2_Tref, Cp_BB4, 
IVT_Tp, SGTE_Tp, ideal_gas, 

V_const, alpha_const, 
alpha_kappa_const, 
alpha_kappa_const2, compound_Tp, 

complex_Tp, calc_Tp 

Function in temperature and 
pressure 

species.h, species.cpp Ref_species, species, matrix, GetNu Species and handling of the 

formula matrix 
func_tpx.h, 

func_tpx_imp.h 
func_tpx.cpp, interact.h, 
interact.cpp 

SymMatrix, RefFuncTpx, FuncTpx, 

NullFuncTpx, IdealMixing, 
Reference, interaction, 
RedlichKister, HochArpshofen, 

Polynomial 

Function in temperature, 

pressure, and mole fractions 

phase.h, phase.cpp ArrayFirstDerivative, 

ArrayMixedDerivative, RefPhase, 

The abstract definition of the 

phase and the simple phase 
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ObjFromProxy, phase, RefSimple, 
NullPhase, PointPhase, 

NumericalDerivatives 

models 

intvars.h, intvars.cpp RefInternalVariables, 

OneInternalVariable. 
InternalVariables 

The abstract definition of the 

solution model with the internal 
variables 

simple.h, simple.cpp SimpleSolution The solution without internal 

variables 
cuox_or.h, cuox_or.cpp CuOx_ordered_plane Y247-like solutions 

cuox_pl.h, cuox_pl.cpp CuOx_plane Y123-like solutions 
ass_sol.h, ass_sol.cpp AssociatedSolution, 

AssociatedSolutionBasis, 
AssSolOneReact, AssSolManyReact, 
associated_solution 

Associated solution models 

 
The files in the TD_ALGO library 

file Classes description 

td_algo.h, 
td_algo_imp.h, 

td_algo.cpp 

convert, RefAlgorithm, algorithm, 
SimpleAlgorithm, InputValue, 

OutputValue, compute, 
PassThrough, PhaseProperty, 

reaction 

The abstract definition of the 
algorithm and the simple 

algorithms 

phase_eq.h, 
phase_eq.cpp 

PhaseEquilibrium Algorithm for the phase 
equilibrium 

output.h, output.cpp RefOutput, output, NullOutput, 
comparison, CycleOutput, 

ComputeOutput, OutputFile 

The abstract definition of the 
output and the simple objects 

 

The files in the VARCOMP library 

file Classes description 

common.h, data.h, 

common.cpp, data.cpp 

data Experimental points 

residual.h, residual.cpp residual Residual 

opt.h, opt.cpp, 
hooke.cpp 

RefOptimizer, optimizer, tensolve, 
LBFGSB, Hooke, ZXSSQ 

Optimizers 

sumsqr.h, static.cpp, 

sumsqr.cpp, 
sumsqrin,cpp, 

sumsqrut.cpp, 
sumsqrpr.cpp 

series The implementation of the 

algorithm to maximize the 
likelihood function 

post_an.h post_an.cpp SeriesOutput, ResidualOutput, 
SpinodalOutput 

Post-analysis 

global.cpp globals Support for the globals object 

assess.cpp  A stub to compile assess 

 

6. Question, discussion, bugs, etc 

The library presented is far from being complete. I consider it just as TDLIB’00. I have set up a 

discussion list 
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tdlib@td.chem.msu.su 

for those who interested in these matters. Your questions, comments, bug reports are welcome. 

In order to subscribe send a line with one word subscribe to 
tdlib-request@td.chem.msu.su 

If you would like just to receive notifications for the next updates, send a line with one word 
subscribe to 
update-request@td.chem.msu.su 
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