ТЕРМОДИНАМИЧЕСКОЕ ОПИСАНИЕ СИСТЕМЫ Bi-Se

© 2000, А.В. Антипов*, Е.Б. Рудный*, Ж.В. Доброхотова**

* Московский Государственный Университет

**Институт Общей и Неорганической Химии им. Н.С. Курнакова Российской Академии Наук, Москва

Поступила в редакцию 25.05.2000

Введение

Данная работа посвящена получению согласованного термодинамического описания системы Bi-Se, которая является одной из граничных бинарных систем в тройной системе Bi-Cr-Se [1]. Это подразумевает совместную обработку всей имеющейся экспериментальной информации по фазовым равновесиям, термодинамическим свойствам фаз и давлению пара с целью определения энергий Гиббса фаз и построения равновесной диаграммы состояния системы Bi-Se.

Исходные экспериментальные данные

В табл. 1 представлены литературные данные по фазовым равновесиям и термодинамическим свойствам фаз и проведенная нами экспертная оценка, а так же приводятся: код эксперимента, измеряемые величины и количество экспериментальных точек, (N), внутри каждой серии. Всего для расчета было взято 469 экспериментальных точек из 25 экспериментов.

Критический анализ и согласование данных по фазовой диаграмме системы Bi-Se приведены в работе [2]. Можно считать установленным существование в системе трех промежуточных фаз: Bi₂Se₃, BiSe и Bi₃Se₂ (рис. 1). Соединение Bi₂Se₃ плавится конгруэнтно [3 - 9], тогда как два других - BiSe [3 -9] и Bi₃Se₂ [5, 7] - образуются по перетектическим реакциям. Фаза BiSe, по данным работ [5, 7], имеет широкую область гомогенности. В настоящей работе все свойства соединений приведены на 1 моль атомов, т.е. для формульных единиц фаз Bi_{0.6}Se_{0.4}, Bi_{0.5}Se_{0.5} и Bi_{0.4}Se_{0.6}.

Код эксперимента	Измеряемая	Комментарии	N	Источник
	величина (Y_{ij}, X_{ij})			
M11, M12, M13, M14	$(T_{ij,mono,}x_{2,ij})$	$Bi_{0.6}Se_{0.4}$ -L ₁	6	[4], [5], [7], [8]
M21, M22, M23, M24	$(T_{ij,mono,} x_{2,ij})$	Bi _{0.5} Se _{0.5} -L ₁	27	[4], [5], [7], [8]
M31, M32, M33, M34,	$(T_{ij,mono,} x_{2,ij})$	$Bi_{0.4}Se_{0.6}-L_1$	49	[4], [5], [7], [8], [9]
M35				
E11, E21, E31, E41	$(T_{ij,non})$	L_1 -Bi _{0.6} Se _{0.4} -Bi	29	[4], [5], [7], [8]
E21, E22, E23, E24	(T _{ij,non})	L_1 -Bi _{0.6} Se _{0.4} - Bi _{0.5} Se _{0.5}	22	[4], [5], [7], [8]
E31, E32, E33, E34,	$(T_{ij,non})$	L_1 -Bi _{0.4} Se _{0.6} -Bi _{0.5} Se _{0.5}	29	[4], [5], [7], [8], [9]
<i>E35</i>				
E41, E42, E43, E44,	$(T_{ij,non})$	L_1 -Bi _{0.4} Se _{0.6} -L ₂	22	[4], [5], [7], [8], [9]
E45				
E51, E52, E53, E54,	$(T_{ij,non})$	L_2 -Bi _{0.4} Se _{0.6} -Se	14	[4], [5], [7], [8]
E55				
EMF1	(E_{ij}, T_{ij})	Bi _{0.4} Se _{0.6}	34	[16]
EMF2	(E_{ij}, T_{ij})	Bi _{0.4} Se _{0.6}	11	[17]
RI	(ρ_{ij}, T_{ij})	Bi _{0.4} Se _{0.6}	10	[11]
<i>R2</i>	(ρ_{ij}, T_{ij})	Bi _{0.4} Se _{0.6}	29	[12]
P1	(p_{ij}, T_{ij})	Bi _{0.4} Se _{0.6}	57	[10]
HL1	$(\Delta H_{mix,ij}, x_{2,ij})$	$\Delta H^{L}_{mix}(736\mathrm{K})$	14	[14]
HL2	$(\Delta H^L_{mix,ij}, x_{2,ij})$	$\Delta H^{L}_{mix}(828\mathrm{K})$	4	[14]
HL3	$(\Delta H^{L}_{mix,ij}, x_{2,ij})$	$\Delta H^{L}_{mix}(988\mathrm{K})$	14	[14]
HSI	$(\Delta H^{L-S}{}_{mix,ij}, x_{2,ij})$	$\Delta H^{L-S}_{mix}(560\mathrm{K})$	50	[13]
HS2	$(\Delta H^{L-S}{}_{mix,ij}, x_{2,ij})$	$\Delta H^{L-S}_{mix}(880\mathrm{K})$	35	[13]

Таблица 1. Экспериментальные данные, используемые для описания систем Bi-Se.

Cp1	$(C_{p,ij,liquid}, x_{2,ij}, T_{ij})$	C_p (liquid)	14	[15]
Ср2	$(C_{p,ij,liquid,},T_{ij})$	C_p (liquid, $x_2=0.6$)	2	[15]
СрЗ	$(C_{p.ij,solids}, T_{ij})$	$C_p(\operatorname{Bi}_2\operatorname{Se}_3)$	20	[18], [22]
Cp4	$(C_{p,ij,solids}, T_{ij})$	$C_p(Bi_{0.5}Se_{0.5})$	30	[18]
HT1	$(\Delta H_{ij}, T_{ijmax}, T_{ijmin})$	${H(T_{max})}$ - $H(T_{min}){(Bi_{0.4}Se_{0.6})}$	3	[14]
H1	$(\Delta H_{ij}, T_{ij})$	$\Delta_{f} H(\mathrm{Bi}_{0.4}\mathrm{Se}_{0.6})$	2	[18], [19], [20], [21]
H2	$(\Delta H_{ij}, T_{ij})$	$\Delta_f H(\mathrm{Bi}_{0.5}\mathrm{Se}_{0.5})$	2	[18], [20]
S1	(S_{ij}, T_{ij})	$S(\operatorname{Bi}_{0.4}\operatorname{Se}_{0.6})$	1	[16]
S2	(S_{ij}, T_{ij})	$S(Bi_{0.5}Se_{0.5})$	1	[16]

Термодинамическая информация для данной системы достаточно обширна.

Исследование равновесий газовая фаза – жидкий и твердый селенид висмута выполнено в [10 - 12]. В работе [10] измерено давление насыщенного пара над жидким селенидом висмута с использованием мембранного манометра, а в [11, 12] определена скорость испарения твердого селенида висмута эффузионным методом Кнудсена. Результаты работ, приведенные к виду удобному для сравнения, удовлетворительно согласуются между собой (рис. 2).

Термодинамические свойства расплава в системе Bi-Se исследовались в [13 - 15]. С использованием сканирующего калориметра выполнены измерения теплоемкости расплавов в области составов 33-65 ат. % Se до 1073 К [15] (рис. 3). Установлено значительное отклонение зависимости теплоемкости от правила Неймана-Копа в области концентраций 50-65 ат. % Se, что позволяет говорить о образовании наличии ближнего порядка В расплавах И. возможно, ассоциированного комплекса, отвечающего составу Bi_{0.4}Se_{0.6}. B [13, 14] определены энтальпии смешения в жидком состоянии в области составов 1-74 ат. % Ѕе при температурах 736, 820 и 990 К [14] и концентрационной области 10-60 ат.% Ѕе при 560 и 880 К [13] с использованием высокотемпературного

микрокалориметра Тиана-Кальве. Результаты работ удовлетворительно согласуются при температурах выше 600 К. Приведенная в работе [13] зависимость Δ_{mix} H(x) при 560 К нами не включена в обработку, так как эти результаты расходятся не только с данными [14], но и противоречат собственным измерениям энтальпии при температуре 880 К (рис. 4). В работах [13, 14] на концентрационных зависимостях энтальпии смешения отмечены экстремумы, отвечающие составу Bi_{0.4}Se_{0.6}, что также подтверждает присутствие ассоциатов в расплаве.

Определение термодинамических свойств селенида висмута было выполнено методом электродвижущих сил с жидким электролитом в температурных интервалах 553-583 К [16], когда Ві_{0.4}Se_{0.6,тв} находился в равновесии с жидким селеном, и 310-410 К [17], когда реализуется равновесие Ві_{0.4}Se_{0.6,тв} - Se_{тв}. Следует отметить, что полученные результаты противоречивы. Вероятно, расхождение обусловлено взаимодействием в работе [16] избыточного жидкого селена в образцах с вольфрамовыми токоотводами электрохимической ячейки, приводящим к изменению химического и фазового состава исследуемого электрода. Поэтому в обработку включены только данные [17] (рис. 5).

Прямое калориметрическое определение энтальпии образования соединения Bi_{0.4}Se_{0.6,тв} из элементов выполнено в работах [18 - 21]. Полученные значения Δ_fH^o(298 K) согласуются в пределах 5 кДж/моль, кроме величины, приведенной в [19], которая, вероятно, является ошибочной. Авторы [18] использовали вакуумно-блочный калориметр, позволяющий проводить синтез при высокой температуре в течение промежутка времени, достаточного для полного протекания реакции, а опыты - при температуре термостата, (298 К). Точность результатов по этой методике составляет 4 %. В работе [20] величина Δ _fH^o(Bi_{0.4}Se_{0.6}, 298 K) получена на основании результатов измерений, выполненных на высокотемпературном калориметре Тиана-Кальве. Она рассчитывалась как алгебраическая сумма тепловых эффектов последовательных сбросов компонентов и исследуемого соединения. Погрешность в определении энтальпии образования по этой методике обычно сопоставима с погрешностью

методики, использованной в [19]. Величина $\Delta_{\rm f} {\rm H}^{\circ}({\rm Bi}_{0.4}{\rm Se}_{0.6}, 298 {\rm K})$ также была определена в работе [21] по методике сожжения в калориметрической бомбе.

Значения энтальпии образования из элементов Bi_{0.5}Se_{0.5} получены в [18, 20] по методикам, описанным выше. Результаты обеих работ удовлетворительно согласуются.

Температурные зависимости теплоемкости соединений Bi_{0.5}Se_{0.5} и Bi_{0.4}Se_{0.6} в интервале 6-300 К получены в низкотемпературном дифференциальном калориметре [18], а изменения энтальпии Bi_{0.4}Se_{0.6} в интервале 300-1000К - в калориметрической установке методом «сброса» [22]. Для соединения Bi_{0.4}Se_{0.6} значение С_р при 300 К из работ [18] и [22] расходятся на 1 Дж/(К моль), что превышает суммарную погрешность, приводимую в этих работах. Такое несоответствие в значениях С_р может быть связанно с использованием вспомогательных материалов: гранита и стали [22] и вакуумного масла [18], что требовало от авторов проведения дополнительных экспериментов по определению температурных зависимостей C_p и {H⁰(T)-H⁰(298)} для каждого из указанных материалов. Кроме того, по данным [18], стандартные энтропии Bi_{0.5}Se_{0.5} и Bi_{0.4}Se_{0.6} близки к аддитивным, что является маловероятным для системы с образованием устойчивых соединений, а значение $S^{0}(Bi_{0.4}Se_{0.6}, 298 \text{ K})$, приведенное в [18], не согласуется с величинами, полученными из результатов измерений методами ЭДС и по определению давления пара [10 - 12, 17]. Поэтому представленные в [18] данные по стандартным энтропиям нами не рассматривались при построении термодинамических моделей фаз.

Термодинамические модели фаз

Сущность термодинамического моделирования заключается в поиске таких моделей для энергий Гиббса фаз системы, которые бы адекватно описывали всю имеющуюся экспериментальную информацию как по термодинамическим свойствам фаз, так и по фазовым равновесиям в системе. Найденные модели позволяют рассчитывать экспериментально неопределенные участки фазовой диаграммы и термодинамические свойства составляющих ее фаз. Поэтому нашей задачей является поиск модели, позволяющей получить исчерпывающую инфор-

5

мацию о термодинамических свойствах возможных фаз и фазовой диаграммы системы Bi-Se.

В предлагаемой модели энергии Гиббса твердых Ві и Se как функции от температуры, $G_{10}(T)$ и $G_{01}(T)$ взяты из базы данных SGTE [23]. Энергии Гиббса точечных фаз Bi_{0.6}Se_{0.4} и Bi_{0.4}Se_{0.6} представлены в виде:

$$G_{mn}(T) = mG_{10}(T) + nG_{01}(T) + H_{mn} - S_{mn}T + a_{mn}(T - T_0 - Tln(T/T_0)) + 4b_{mn}(T^{1/2} - T_0^{1/2})$$
(1)

где H_{mn} , S_{mn} , a_{mn} и b_{mn} – неизвестные параметры, подлежащие определению, $T_0 = 300$ К. Величины a_{mn} и b_{mn} – коэффициенты температурной зависимости теплоемкости Бермана-Брауна [24]. Для соединения Bi_{0.6}Se_{0.4} (так как экспериментальные данные по зависимости $C_p(T)$ этой фазы отсутствуют) a_{mn} и b_{mn} приняты равными нулю, что отвечает приближению $\Delta C_p = 0$. В выражении (1) $G_{10}'(T)$ и $G_{01}'(T)$ имеют вид:

$$G_{10}'(T) = 47.2354 - 56.8931T + 25.53254(T - T_0 - Tln(T/T_0))$$
⁽²⁾

$$G_{0l}'(T) = 46.42 - 42.1206T + 25.1066(T - T_0 - Tln(T/T_0))$$
(3)

В нашем случае G_{10} '(T) и G_{01} '(T) численно равны энергиям Гиббса Ві и Se в предположении $C_p = C_p(300K) = \text{const}$, в отличии от $G_{10}(T)$ и $G_{01}(T)$ [23], полученных с учетом наличия на зависимостях теплоемкостей от температуры для Ві и Se максимумов, связанных с плавлением. Учет этих аномалий не позволил нам корректно описать экспериментальны зависимости $C_p(T)$ для Bi_{0.4}Se_{0.6}.

Энергия Гиббса фазы Bi_{0.5}Se_{0.5}, имеющей широкую область гомогенности, записывалась в виде:

$$G_{11}(T) = (I - x)\{G_{10}(T) + H_{10} - S_{10}T\} + x\{G_{01}(T) + H_{01} - S_{01}T\} + a_{11}(T - T_0) - Tln(T/T_0)\} + 4b_{11}(T^{1/2} - T_0^{1/2}) + (I - x)RTln(I - x) + xRTln(x) + (A_0^{"} + B_0^{"})T)x(I - x)$$
(4)

где \dot{H}_{10} , \dot{H}_{01} , \dot{S}_{10} , \dot{S}_{01} – неизвестные параметры стабильности (см. напр. [25]); a_{11} и b_{11} – требующие определения коэффициенты, относящиеся к теплоемкости фазы, в предположении, что C_p не является функцией состава; \ddot{A}_0 и \ddot{B}_0 – подлежащие установлению вклады в энергию Гиббса, учитывающие взаимодействия между атомами; *х* – мольная доля селена в Bi_{1-x}Se_x.

Энергия Гиббса расплава описывалась модифицированной моделью ассоциированного раствора [26]:

 $G(T, x) = (1 - x)G^{L}_{10} + xG^{L}_{01} + \{y_{1}RTln(y_{1}) + y_{2}RTln(y_{2}) + y_{3}ln(y_{3}) + (L_{a1} + L_{b1} + L_{c1}Tln(T))y_{3} + y_{1}y_{3}[L_{a2} + L_{b2}T + (L_{a21} + L_{b21}T)(y_{1}-y_{3})] + y_{2}y_{3}[L_{a3} + L_{b3}T + (L_{a31} + L_{b31}T)(y_{2}-y_{3})^{2}]\}$ (5)

в предположении, что расплав содержит жидкие Bi, Se и ассоциат Bi_{0.4}Se_{0.6}, мольные доли которых - y₁, y₂, y₃, соответственно. Значения последних при заданной температуре и брутто-мольной доле селена в расплаве (x) определялись по методике, описанной в [26]. Неизвестные величины L_{a1} , L_{b1} , L_{c1} , L_{a2} , L_{b2} , L_{a21} , L_{b21} , L_{a3} , L_{b3} , L_{a31} , L_{b31} можно интерпретировать следующим образом: L_{a1} , L_{b1} , L_{c1} - составляющие в энергии Гиббса ассоциата; L_{a2} , L_{b2} , L_{a21} , L_{b21} - параметры взаимодействия между висмутом и ассоциатом; L_{a3} , L_{b3} , L_{a31} , L_{b31} - параметры взаимодействия между селеном и ассоциатом. G^{L}_{10} и G^{L}_{01} – энергии Гиббса жидких селена и висмута соответственно, которые взяты из [23].

Энергия Гиббса насыщенного пара описывалась в рамках модели идеального ассоциированного газа, содержащего 11 газообразных молекул: Bi, Bi₂, Bi₃, Bi₄, Se, Se₂, Se₃ Se₄, Se₅, Se₆, Se₇, Se₈, BiSe. Значения Δ G индивидуальных газофазных молекул взяты из банка данных ИВТАН-ТЕРМО [27].

Уравнения (1), (4), (5) являются предлагаемой термодинамической моделью, общее количество неизвестных параметров в которой, подлежащих определению, равно 25.

Статистическая обработка экспериментальных данных

Для совместной обработки имеющихся экспериментальных данных использован метод под названием «нелинейная физико-химическая модель + линейная модель ошибки» [28]. Считалось, что все экспериментальные величины описываются уравнением:

$$Y_{ij} = f_{\underline{i}}(X_{ij}, \Theta) + \varepsilon_{ij}.$$
(6)

Индекс і нумерует разные эксперименты, индекс ј - экспериментальные

точки внутри эксперимента, а вектор Θ включает 25 неизвестных параметров модели. В разных экспериментах Y и X соответствуют разным физическим величинам (температуре и составу, энтальпии растворения и составу, и т.д.), и между ними существуют разные функциональные зависимость f_i . В табл. 1 указан набор параметров (Y_{ij} , X_{ij}) для каждого типа эксперимента.

Функциональные зависимости f_i устанавливались на основании законов химической термодинамики, которые позволяют рассчитывать все термодинамические свойства системы и строить ее полную диаграмму состояния из заданных энергий Гиббса. Принципы нахождения функциональных зависимостей, f_i , следующие.

 Энтальпия образования, энтропия и теплоемкость соответствующие производные энергии Гиббса фазы.

2. Электродвижущая сила, E, связана с изменением энергии Гиббса, отвечающего потенциалобразующему процессу электрохимического элемента, уравнением $\Delta G = -nEF$, где n – заряд переносимого иона, F – число Фарадея.

 Температуры и составы сосуществующих фаз определяются численным решением системы уравнений, соответствующей критерию равновесия, – равенству химических потенциалов компонентов в сосуществующих фазах.

4. При обработке данных по давлению пара над расплавом парциальные давления всех 11 газофазных молекул рассчитываются из химических потенциалов жидких селена и висмута. Общее давление рассчитывается как сумма парциальных давлений.

5. Суммарная скорость испарения Bi_{0.4}Se_{0.6} рассчитывается из парциальных давлений насыщенного пара газофазных молекул по уравнению Герца-Кнудсена. Парциальные давления определялись из системы уравнений, следующей из критерия равновесия и условия конгруэнтного испарения Bi_{0.4}Se_{0.6} - ρ_{Σ/Bi}: ρ_{Σ/Se}=2:3, где ρ означает суммарный поток висмута и селена исходящий из камеры Кнудсена.

8

В соответствии с методом, описанным в работе [28], предполагалось, что полная ошибка в уравнениях (6) подчиняется уравнению:

$$\varepsilon_{ij} = \varepsilon_{r,ij} + \varepsilon_{a,i} + \varepsilon_{b,i} (X_{ij} - X_i) \tag{7}$$

где X_i – среднее значение величин X_{ij} в *i*-м эксперименте, $\varepsilon_{r,ij}$ – собственно ошибка воспроизводимости, а величины $\varepsilon_{a,i}$ И $\varepsilon_{b,i}$ соответствуют систематическим ошибкам сдвига (калибровки) и поворота (тренда) в і-й серии. Предполагалось, что компоненты ошибок $\varepsilon_{r,ij}$, $\varepsilon_{a,i}$ и $\varepsilon_{b,i}$ – это независимые случайные величины с дисперсиями, равными $\sigma_{r,i}^2$, $\sigma_{a,i}^2$, $\sigma_{b,i}^2$, соответственно. Использована гипотеза одинакового компромисса, описанная в работе [29], которая заключается в том, что дисперсии $\sigma_{r,i}^2$ одинаковы внутри каждой экспериментальной методики, а величины $\gamma_1 = \sigma_{a,i}^2 / \sigma_{r,i}^2$ и $\gamma_2 = \sigma_{b,i}^2 / \sigma_{r,i}^2$ одинаковы во всех экспериментах.

Неизвестные параметры, входящие в уравнение (6), были рассчитаны с помощью компьютерной библиотеки TDLIB [26].

Обсуждение результатов

Предварительные расчеты показали, что использование полиномиальных моделей для энергии Гиббса расплава, например, таких как модель Hoch-Argosphen, не позволяет удовлетворительно описать свойства жидкой фазы (поведение энтальпии смешения и теплоемкости). В то же время использование модели модифицированного ассоциированного раствора, включающего в себя 11 неизвестных параметров (уравнение 5), приводит к удовлетворительному описанию. Большое число неизвестных параметров в данной модели связано со сложным поведением термодинамических функций смешения расплава (рис. 3, 4), а так же с наличием несимметричного жидкостного расслаивания в рассматриваемой системе (рис. 1). Полученные в результате расчета коэффициенты для энергий Гиббса фаз представлены в таблицах 2 и 3, а для расплавов в табл. 4. В табл. 5 представлены величины стандартных теплот образования, энтропий и теплоемкостей соединений Bi0.6Se0.4, Bi0.5Se0.5 и Ві_{0.4}Se_{0.6}, полученные в результате расчетов, и дано их сравнение с данными, предложенными в работе [2].

Таблица 2. Термодинамические свойства твердого раствора на основе соединения BiSe

H ¹ 10	S ['] ₁₀	H [°] ₀₁	S ['] ₀₁	Å" ₀	B [°] ₀	a_{11}	b ₁₁
2.751e+04	-14.81	-1.717e+04	13.37	-1.241e+05	41.61	4.017	-34.16

(коэффициенты уравнения (4), дающие энергию Гиббса в Дж/моль).

Таблица 3. Термодинамические свойства точечных фаз Bi₃Se₂ и Bi₂Se₃ (коэффициенты уравнения (1), дающие энергию Гиббса в Дж/моль).

Фаза	H _{mn}	\mathbf{S}_{mn}	a_{mn}	B_{mn}
Bi _{0.6} Se _{0.4}	-3.17e+04	14.37	7.304	-107.5
Bi _{0.4} Se _{0.6}	-1.84e+04	4.655	-	-

Таблица 4. Термодинамические свойства расплава (коэффициенты уравнения (5), дающие энергию Гиббса в Дж/моль).

L _{a1}	L _{b1}	L _{c1}	L _{a2}	L _{b2}	L _{a21}	L _{b21}	L _{a3}	L _{b3}	L _{a31}	L _{b31}
-23900	-0.951	1.016	1154	2.475	11300	-11.96	15600	2.316	21400	21.2

Таблица 5. Термодинамические свойства соединений системы Bi-Se.

Фаза	$\Delta_f H^0$ (расч)	<i>S</i> ⁰ (расч.),	C^{0}_{p} (расч.)	$\Delta_{f}H^{0}([2])$	S ⁰ ([2]).	$C_{p}^{0}([2])$
	кДж/моль	Дж/К	Дж/К моль	кДж/моль	Дж/К моль	Дж/К моль
		моль				
Bi _{0.6} Se _{0.4}	-18.4	55.5	25.4	-	-	-
$Bi_{0.5}Se_{0.5}$	-25.9	45.4	27.4	-23.0	50.6	27.3

$Bi_{0.4}Se_{0.6}$	-31.7	33.5	26.4	-28.0	47.8	25.8

Ранее термодинамическое описание диаграммы состояния Bi-Se не проводилось. На рис. 1 представлены результат наших расчетов диаграммы состояния этой системы, полученный совместной обработкой всей имеющейся информации по фазовым равновесиям и термодинамическим свойствам фаз, а также первичные экспериментальные данные по фазовым равновесиям. Описание диаграммы фазовых состояний системы Bi - Se, в целом, хорошо воспроизводит экспериментальные температуры ликвидуса (рис. 1) и координаты нонвариантных точек (табл. 6).

Таблица 6. Нонвариантные равновесия в системе Bi-Se по нашим и данным работы [2].

Равновесия	L_1 - $Bi_{0.6}Se_{0.4}$ -	L_1 - $Bi_{0.6}Se_{0.4}$ -	$L_1 - Bi_{0.4}Se_{0.6}$	L_1 - $Bi_{0.4}Se_{0.6}$	L_2 - $Bi_{0.4}Se_{0.6}$
	Bi	$Bi_{0.5}Se_{0.5}$	- Bi _{0.5} Se _{0.5}	- <i>L</i> 2	–Se
Т, К (расчеты)	539.5	741.0	884.7	896.8	482.4
<i>T</i> , К (работа [2])	542.8	744	880.3	892.0	490.2

На рис.4 представлены расчетные зависимости энтальпии смешения в различных температурах расплавах ОТ состава при И имеющиеся экспериментальные значения [13,14]. Видно, что удалось полностью описать сложное поведение концентрационной зависимости данной функции. Это же относится и к описанию поведения теплоемкости в расплаве (рис. 3). Рассчитанная нами зависимость давления насыщенного пара от температуры хорошо воспроизводит экспериментальные результаты (рис. 2), (следует указать, что линии R₁ R₂ P₁ имеют разные размерности). Что касается первичных экспериментальных данных, полученных методом ЭДС [17], то они также согласуются с расчетными характеристиками в пределах погрешностей эксперимента и расчета (рис. 5).

Заключение

Предлагаемые термодинамические модели фаз в системе Bi - Se адекватно описывают всю использованную экспериментальную информацию и могут быть использованы для расчета фазовых равновесий в тройной системе Cr - Bi - Se.

Список литературы

1. Г.Г. Шабунина, Е.В. Киреева, Т.Г. Аминов. Исследование взаимодействия системы Bi₂Se₃ с Cr₂Se₃.// Ж. Неорг. Химии. 1996. Т.41. N 9. С. 1565-1567.

2. С.Н. Чижевская Л.Е. Шелимова, И.А. Зайцева. Критическая оценка и согласование данных по диаграмме состояния Bi-Se.//Неорг. материалы. 1994. T.30 N 11. C. 1289-1387.

3. Семилетов С.А., Пинсккер З.Г., Электронографическое исследование сплавов системы Bi-Se// Доклады АН СССР, 1955, Т. 100, С. 1079.

4. Абрикосов Н.Х., Банкина В.Ф., Харитонович К.Ф. Исследование диаграммы состояния Bi-Se // Ж. Неорг. Химии. 1960. Т.5 N9. С. 2011-2016.

5. Gather B., Blachinik R. Ternare Chalkogenhaltige Systeme Tern*ppe chalkogenhaltige Systeme*// Z. Metallkd. 1975, B. 66. N 6., P. 356-359.

6. Binary Alloy Phase Diagrams // Ed. Massalski T.B. Ohio: Amer. Soc. For metals, Metals Park, 1986. V.1. P. 537-538.

7. Шер А.А., Один И.Н., Новоселова А.В., Исследование фаз в системе BiSe. // Ж. Неорг. Химии. 1986. Т.31. N 3. C. 764-767.

8. Gardes B., Brun G., Tedenac J.-C. Contribution to the study of Bi-Se system. // Eur. J. Solid. State. Inorg. Chem. 1989. V. 26. N 2. P. 221-229.

9. Порецкая Л.В., Анухин А.И., Коржуев М.А. Диаграмма состояния системы Bi-Se в области соединения Bi₂Se₃ // Неорг. материалы. 1991. Т. 27. N 6. С. 1190-1193.

10. Бончева-Младенова З., Пашинкин А.С., Новоселова А.В. Определение давления насыщенного пара твердого селенида висмута. // Неорг. материалы, 1968. Т.4. N.7 C.1027-1031.

11. Устюгов Г.П., Вигдорович Е.Н., Тимошин И.А. Давление насыщенного пара селенида и теллурида висмута // Неорг. Материалы, 1969. Т.5. N 1. С.166-167

13

12. Крестовников А.Н, Горбов С.И. Давление пара селенида висмута // Ж. физ. химии. 1967. Т.41. N 3. C. 726-728.

13. Bros H., Castanet R., Kehiaidan H.V. Etude Calorimetriaue du Systeme Bismuth-Selenium // High Temp. - High Press. 1986, V.8, N3. P. 271-278.

14. F. Kakinuma, S. Ohno and K. Suzuki. Heat capacities of liquid Sb-Se and Bi-Se alloys// Journal of Non-Crystalline Solids 117/118. (1990.) 575-578.

15. Maekawa T., Yokokava T., Niwa K. Entalpies of Mixing in the Liquid State IV. Bi+Se and Sb+Se// J. Chem. Thermodyn. 1972. V. 4. N. 6. p. 873-878.

16. Мелех Б.Т., Семенкович С.А. Термодинамические свойства селенида и теллурида трехвалентного висмута // Неорг. материалы, 1968. Т. 4. N8. C.1346-1348.

17. Васильев В.П., Сомов А.П., Никольская А.В., Герасимов Я.И. Исследование термодинамических свойств селенида висмута методом электродвижущихся сил// Ж. физ. химии, 1968. Т. 42. N3. С. 675-677.

18. Т.А. Столярова, Н.М. Гаврилов, И.Я. Некрасов. Термодинамические свойства селенида висмута.//Геохимия 1990. Т.9. С. 1368-1374.

19. G. Gattow, A. Schneider. Die Bildungaswarmen der Wismutchalkogenide // Andrew. Chem. 1955. B67. N11. S. 306-307.

20. Bros H., Castanet R., Kehiaidan H.V. Etude Calorimetriaque du systeme Bismuth-Selenium // High temp. – High press. 1986, V.8, N3. P. 271-278.

21. Андреева Л.Л., Кудрявцев А.А // Теплота образования селенида висмута (Bi₂Se₃) // Тр. МХТИ им. Д.И. Менделеева. 1965. Т.49. С. 25-27.

22. Расулов С.М. Составляющие теплоемкости соединений A^{IV}Se и A₂^VSe₃ при высоких температурах. // Теплофизика высоких температур. 1988. Т.26. N.1. c.81-86

23. Dindsdale A.T. SGTE data for pure elements. // CALPHAD. 1991. V.15, N.4, p. 335,401.

24. Berman R.G., Brown T.H., Heat capacity of minerals in the system Na₂O- K_2O -CaO-MgO-FeO-Fe₂O₃-Al₂O₃-SiO₂-TiO₂-H₂O-CO₂: representation, estimation and high temperature extrapolation // Contrib. Mineral. Petrol, T. 89, p. 168-183 (1985).

25. Г.Ф. Воронин. Основы термодинамики. // М.: МГУ, 1987.

26. E.B. Rudnyi Computational Thermodynamics Library: TDLIB'99 // Presented at Sixth Electronic Computational Chemistry Conference, November 1999, http://www.chem.msu.su/~rudnyi/tdlib/.

27. Гурвич Л.В., ИВТАН-ТЕРМО - Автоматизированная система данных о термодинамических свойствах веществ. // Вестн. АН СССР. 1983. N 3. C. 5.

28. E.B. Rudnyi. Statistical model of systematic errors: linear error model. Chemometrics and Intelligent Laboratory Systems. 1996, V. 34, N 1, p. 41-54.

29. E.B. Rudnyi, V.V. Kuzmenko, G.V. Voronin. Simultaneous assessment of the YBa2Cu3O6+z thermodynamics under the linear error model. J. Phys. Chem. Ref. Data, 1988, v. 27, N 5, p. 855-888.

Подписи к рисункам в статье Антипов А.В. Рудный Е.Б. Доброхотова Ж.В. ТЕРМОДИНАМИЧЕСКОЕ ОПИСАНИЕ СИСТЕМЫ Bi-Se.

рис. 1. Диаграмма состояния Bi-Se; линии показывают рекомендуемое решение, описание экспериментальных серий в табл. 1.

рис. 2. Зависимости давления насыщенного пара и скорости эффузии от температуры; линии показывают рекомендуемое решение, описание экспериментальных серий в табл. 1.

рис. 3. Концентрационные зависимости теплоемкости расплава при различных температурах; линии показывают рекомендуемое решение, описание экспериментальных серий в табл. 1.

рис. 4. Концентрационные зависимости энтальтии смешения расплава в системе Bi-Se при различных температурах; величины $\Delta H_{mix}/x_1x_2$ относятся к энтальтии смешения или энтальтии образования твердых фаз из жидких компонентов; линии показывают рекомендуемое решение, описание экспериментальных серий в табл. 1.

рис. 5. Температурная зависимость электродвижущих сил ячейки (-)Bi| Bi³⁺ | Bi₂Se_{3(тв)}+Se_(тв,ж)(+) от температуры; линии показывают рекомендуемое решение, описание экспериментальных серий в табл. 1.