Гетерогенные и гомогенные химические реакции

Понятия

- Химическое сродство
- Термодинамическая константа равновесия
- Константа равновесия, выраженная через парциальные давления
- Константа равновесия, выраженная через концентрации
- Константа равновесия, выраженная через мольные доли

Уравнения

- Правило фаз Гиббса
- Условие равновесия в случае протекания гетерогенной химической реакции с участием чистых веществ
- Связь константы равновесия с изменением стандартной энергии Гиббса
- Зависимость константы равновесия от температуры

Проблемы

Расчеты для случая протекания одной гетерогенной химической реакции с участием чистых веществ. Влияние температуры и давления на равновесный состав

- 1. Оксид сурьмы Sb_2O_3 испаряется в виде молекул Sb_4O_6 . Давление Sb_4O_6 при 577°C составляет 2 мм. рт. ст. Какое давление Sb_4O_6 будет при 677°C? Температура плавления Sb_2O_3 655 C, энтальпия плавления 23 кДж/моль. Энтальпия сублимации Sb_2O_3 (тв) = 0.5 Sb_4O_6 (газ) 150 кДж/моль. Считать ΔC_p реакций сублимации и испарения равными нулю.
- 2. При какой температуре будут одновременно сосуществовать $FeCl_3(s)$, $FeCl_2(s)$ и Cl_2 , если внешнее давление составляет 10 мм. рт. ст. Считать $\Delta C_p = 0$. Что произойдет, если при этой температуре внешнее давление будет больше 10 мм. рт. ст.? меньше 10 мм. рт. ст.?

	$FeCl_3(s)$	Cl_2	FeCl ₂ (s)
$\Delta_{ m f} H^{o}_{298}, \ m кДж/моль$	-399.4	0	-342
S^{o}_{298} , Дж/К/моль	145.	223.	118.

3. При комнатной температуре серебро на воздухе окисляется. Однако при нагревании пленка оксида исчезает. Оцените температуру, при которой оксид неустойчив. $\Delta_f H^o_{298}(Ag_2O) = -7$ ккал/моль, $\Delta_f S^o_{298}(Ag_2O) = -15.3$ кал/моль/К. (T > 415 K)

Связь констант равновесия с термодинамическими величинами

- 4. При 550 С и постоянном общем давлении 1 атм из 1 моля CO и 1 моля Cl_2 первоначальной смеси образуется 0.2 моля фосгена. Определить K_p и K_c для этой реакции.
- 5. Для реакции разложения известняка давление диссоциации при 800° C равно $0.26\cdot10^{5}$ Па, а при 1000 C равно $4.8\cdot10^{5}$ Па. Найти средние значения $\Delta_{\rm r}H^{\circ}$ и $\Delta_{\rm r}S^{\circ}$ для этой реакции в данном интервале температур, а также давление диссоциации при температуре 1157 К. (165.6 кДж/моль, 143.1 Дж/моль/К, 1 атм)

- 6. При диссоциации NH₄Cl(тв) равновесное давление паров при 427°C составляет 4560 мм. рт. ст. а при 459°C 8360 мм. рт. ст. Найти средние значения $\Delta_r H^o$ и $\Delta_r S^o$.(161.3 кДж/моль, 248.7 Дж/моль/К)
- 7. Температурная зависимость константы равновесия реакции $H_2O(g) + CO = H_2 + CO_2$ описывается уравнением lg K = 2156/T 2.2, а энтальпия сгорания $\Delta_c H^o(CO) = -283.0$ кДж/моль. Рассчитать энтальпию образования $H_2O(g)$. (-241.8 кДж/моль)

Расчет равновесного состава при протекании гомогенных химических реакций. Зависимость степени протекания реакции от температуры и давления

8. Рассчитать степень диссоциации N_2O_4 при $25^{\circ}C$ и давлении 10^5 Па. Исходные данные

	N_2O_4	NO_2
$\Delta_{ m f} H^{^o}{}_{298},~ \kappa Дж/моль$	9.16	33.2
S^{o}_{298} , Дж/К/моль	304.3	240.5

Как зависит степень диссоциации от температуры и давления? (20%)

- 9. Рассчитать степень диссоциации 2 г SO_2Cl_2 на SO_2 и Cl_2 при 120°C, помещенных в объем 0.5 л. Энтальпии образования SO_2Cl_2 и SO_2 при 298 К составляют -355 и -296.8 кДж/моль. $K_p(298 \text{ K}) = 1.6 \cdot 10^{-4}$.
- 10. Составить уравнения для расчета равновесного состава, если одновременно протекают реакции A+B=C и 2A=D. При температуре 800 К значения $\Delta_r G^o$ первой и второй реакций составляют соответственно -14.7 и -8.2 кДж/моль. Исходная смесь содержит 3 моля вещества A и 1 моль вещества B. A, B, C, D идеальные газы, общее давление 10 мм. рт. ст.
- 11. Составить систему уравнений, описывающую равновесный состав газовой смеси (при 900 К и 1 атм), образующейся в результате конверсии метана водяным паром. Исходные концентрации воды и метана относятся как 4:1.

$$CH_4 + H_2O = CO + 3H_2$$
 $K_p = 1.306$
 $CO + H_2O = CO_2 + H_2$ $K_p = 2.204$