Automatic Compact Modelling for MEMS: Applications, Methods and Tools

Lecture 2:
Implicit Moment Matching via Arnoldi Process: Theory

Evgenii B. Rudnyi, Jan G. Korvink
http://www.imtek.uni-freiburg.de/simulation/mor4ansys/

- Methods based on Hankel singular values (SLICOT)

- Implicit moment matching
- Solving a system of linear equations
-MOR for ANSYS

MOR and Transfer Function

IMTEK
-Representations in time

$$
Y(s)=H(s) U(s)
$$ and Laplace domains are equivalent.

$$
y(t)=\frac{1}{2 \pi i} \int_{\gamma-i \infty}^{\gamma+i \infty} Y(s) e^{s t} d s
$$

- Evaluating the transfer function along the imaginary axis is enough (Bode plot).

$$
H(i \omega)=C(i \omega E+K)^{-1} B
$$

- Model reduction is done in the Laplace domain:
\checkmark Approximating the transfer function.

$$
\hat{H}(i \omega)=\hat{C}(i \omega \hat{E}+\hat{K})^{-1} \hat{B}
$$

\checkmark Formal dimension is the same.
\checkmark Complexity is reduced.

Hankel Singular Values

-Dynamic system in the state-space form:

$$
\begin{gathered}
\dot{x}=A x+B u \\
y=C x
\end{gathered} \quad H(s)=C(s I-A)^{-1} B
$$

- Lyapunov equations to determine controllability and observability
Gramians:
-Hankel singular values (HSV):

$$
\sigma_{i}=\sqrt{\lambda_{i}(P Q)}
$$

\checkmark square root from eingenvalues for product of Gramians.

$$
\begin{aligned}
& A P+P A^{T}+B B^{T}=0 \\
& A^{T} Q+Q A+C^{T} C=0
\end{aligned}
$$

Global Error Estimate

- Log10[HSV(i)] vs. its number.
-From Antoulas review.

Methods Based on HSV

- The theory works for stable systems.

$$
\lambda_{i}(A)<0
$$

\checkmark In unstable systems something should be done with unstable poles.

- Hankel Norm

Approximation:
\checkmark Produces an optimal solution.

- Balanced Truncation

Approximation:
\checkmark Most often used.
\checkmark Faster than HNA.
\checkmark Does not preserve the stationary state.

- Singular Perturbation

Approximation:
\checkmark Preserves the stationary state.
-Frequency-weighted model reduction.

$$
\|V(H-\hat{H}) W\|_{\infty}
$$

-FORTRAN Code +

Examples found at:
\checkmark http:/ / www.slicot.de

- European Community BRITE-EURAM III Thematic Networks Programme.
- Implements all methods:
\checkmark Balanced Truncation Appr.
\checkmark Singular Perturbation Appr.
\checkmark Hankel Norm Appr.
\checkmark Frequency-weighted MOR.
- Has a parallel version.
- Yet, the computational complexity is $\mathrm{O}\left(\mathrm{N}^{3}\right)$.
- Limited to "small" systems.

Dimension	Serial	Parallel (4 processors)
600	60	25
1332	703	130
2450	4346	666
3906		2668

Moment Matching

$$
\begin{aligned}
& E \dot{x}=A x+B u \\
& y=C x \\
& H(s)=C(s E-A)^{-1} B \\
& H_{i j}(s)=\frac{\left(s-z_{1}\right) \ldots\left(s-z_{N}\right)}{\left(s-p_{1}\right) \ldots\left(s-p_{N}\right)} \\
& \hat{H}_{i j}(s)=\frac{\left(s-z_{1}\right) \ldots\left(s-z_{r}\right)}{\left(s-p_{1}\right) \ldots\left(s-p_{r}\right)} \\
& H_{i j}=\sum_{0}^{\infty} m_{i}\left(s-s_{0}\right)^{i}
\end{aligned}
$$

function: zeros and poles.
-Then search an approximation among rational functions.

- Expand transfer functions at some point s_{0} in the Tailor series.
- Require that first moments are the same.

$$
m_{i}=\hat{m}_{i}, \quad i=0, \ldots, r
$$

Moments

- Use matrix identity.
- Let us take expansion point zero.
- The simplest case of a $\quad(s E-A)^{-1} A A^{-1}=\left[A^{-1}(s E-A)\right]^{-1} A^{-1}$ scalar transfer function.
\checkmark Single Input - Single Output.

$$
H(s)=-C\left(I-s A^{-1} E\right)^{-1} A^{-1} B
$$

\checkmark Input matrix is a column, output matrix is a row.

$$
(I-s P)^{-1}=I+\sum_{i=1}^{\infty} P^{i} s^{i}=\sum_{i=0}^{\infty} P^{i} s^{i}
$$

$$
H(s)=C(s E-A)^{-1} B
$$

$$
(s E-A)^{-1} A A^{-1}=\left[A^{-1}(s E-A)\right]^{-1} A^{-1}
$$

$$
H(s)=-\left[C A^{-1} B+\sum_{i=1}^{\infty} C\left(A^{-1} E\right)^{i} A^{-1} B s^{i}\right]
$$

Krylov subspace

- Matrix P and vector r
- Right Krylov subspace
- Transposed matrix P and vector l
- Left Krylov subspace
- Krylov subspace defines a low dimensional subspace: \checkmark Basis is not unique.
- Direct computation is numerically unstable because of rounding errors.

$$
\begin{aligned}
& \left\{r, P r, P^{2} r, \ldots, P^{k-1} r\right\} \\
& \quad \mathfrak{J}_{R, k}(P, r) \quad \Im_{k}(P, r)
\end{aligned}
$$

$$
\left\{l, P^{T} l, P^{T^{2}} l, \ldots, P^{T^{k-1}} l\right\}
$$

$$
\mathfrak{J}_{L, k}(P, l)
$$

- Robust computational algorithms are included in 10 top algorithms of the 20th century.

Implicit Moment Matching

- Take matrix and vector corresponding to a given expansion point.
- Compute the orthogonal basis by the Arnoldi process.
- Project the original system on this basis.
- One can prove that this way the reduced model matches k moments.

$$
\begin{gathered}
s_{0}=0 \quad P=A^{-1} E \quad r=A^{-1} b \\
V=\operatorname{span}\left\{\Im\left(A^{-1} E, A^{-1} b\right)\right\} \\
V=\operatorname{span}\left\{r, \operatorname{Pr}, P^{2} r, \ldots P^{k-1} r\right\}
\end{gathered}
$$

- Multiple inputs:
\checkmark Block Krylov Subspace, \checkmark Block Arnoldi.
-The Lanczos algorithm used the right and left
Krylov subspaces.
\checkmark More problems.
\checkmark We will not consider it in this course.

Projection

- Projection onto lowdimensional subspace. - Very general approach, not limited to moment matching.
- Moment matching preserves r moments.

$$
x=V z+\varepsilon
$$

$$
E \dot{x}+K x=B u
$$

$$
V^{T} E V \dot{z}+V^{T} K V z=V^{T} B u
$$

$$
E_{r} \cdot+K_{r} \cdot=F_{r}
$$

- Matrix from the left is different in the Lanczos algorithm.

Arnoldi vs. Lanczos

IMTEK

	Arnoldi	Lanczos
Accuracy of approximation	r moments match	$2 r$ moments match
Computational complexity		
Invariance properties		
Numerical stability		χ
Preservation of		χ

Arnoldi Process

- Input: matrix P and vector r
- Normalize vector $v_{1}=r /|r|$
- Do ($i=2, k$):
\checkmark Next vector $w=P v_{i-1}$
\checkmark Orthogonalize w in respect to $\left\{v_{1}\right.$, $\left.\ldots, v_{i-1}\right\}$
\checkmark Normalize $v_{i}=w /|w|$
- Output: $V=\left\{v_{1}, \ldots, v_{k}\right\}$
$\checkmark V$ is orthogonal $V^{T} V=I$
- Input vector must not be zero.
-Deflation can happen:
\checkmark Stop earlier.
- Orthogonalization
\checkmark Gram-Schmidt
- Input: w and $\left\{v_{1}, \ldots, v_{i-1}\right\}$
- Do ($j=1, i-1$):
$\checkmark w=w-\left(w^{T} v_{i}\right) v_{i}$
- Output: new w
- Could be generalized to multiple inputs (see Freund).

Sparse Matrices

Structure Plot

- In the finite element method matrices are sparse.
- We have to store only nonzeros entries.
\bullet nnz - number of nonzeros.

City Plot

Treating Matrix Inverse

- The Arnoldi process requires matrix vector

$$
v_{i+1}=A^{-1} E v_{i}
$$ product.

- Yet, we have a matrix

$$
u_{i+1}=A^{-1} u_{i}
$$ inverse.

- Instead solve a system of linear equations.
- This is the biggest computational cost:
\checkmark Number of vectors x time for linear solve.
- The only right hand side is different.
- Can be used to speed it up.

Direct Solvers

- Gauss elimination.
- Positive definite matrices:
\checkmark Cholesky decomposition.
- General symmetric matrix:
$\checkmark \mathrm{L}^{\mathrm{T}} \mathrm{DL}$ decomposition.
- Unsymmetric matrix:
\checkmark LU decomposition.

$$
L U x=b
$$

$$
A x=b
$$

$$
A=L^{T} L
$$

$$
A=L^{T} D L
$$

$$
A=L U
$$

-1) Factorization (expansive).
-2) Back substitution (cheap).
-Well suited for model reduction.

Reordering

$$
\checkmark \text { nnz } 2215638 \text { (in its half) ~ } 2.210^{6}
$$

- Factorization creates fill-in. - Factor size depends on the matrix structure.
- Reordering reduces fill-in in the factor.
- Symmetric matrix

$$
\checkmark 79171 \times 79171
$$

method	time to reorder	nnz in factor	time to factor
genmmd	1.9	13010^{6}	1166
md	4.0	16010^{6}	1684
mmd	4.0	12710^{6}	1135
amd	1.4	12710^{6}	1135
metis	17	4710^{6}	239

Iterative Solvers

- Direct solvers have an upper limit because of memory requirements.
- Use iterative solvers:
\checkmark Could be faster.
\checkmark The only possibility for high dimensions.
-However, the success highly depends on a preconditioner.
- Model reduction still could be advantageous.
- 4 Gb of RAM
- Structural mechanics
problem:
$\checkmark 375801$ DoFs
$\checkmark 15039875 \mathrm{nnz}$
- Sparse solver:

490 s

- PCG solver with 1e-8
tolerance: 290 s
- PCG solver with 1e-12
tolerance: 420 s

Nonzero Expansion Point

- Expansion around zero preserves stationary state.

$$
\begin{gathered}
E \dot{x}=A x+B u \\
y=C x
\end{gathered}
$$

- In principle, one can take any expansion point.
- Complex expansion point
leads to problems.
- One can take several expansion points.

$$
\left[\left(s-s_{0}\right) E+s_{0} E-A\right]^{-1}\left(s_{0} E-A\right)\left(s_{0} E-A\right)^{-1}
$$

$$
H(s)=C\left[I+\left(s-s_{0}\right)\left(s_{0} E-A\right)^{-1} E\right]^{-1}\left(s_{0} E-A\right)^{-1} B
$$

When to Use Nonzero Expansion Point

- When the stiffness matrix is degenerated. \checkmark Check Eigenvalues[MatrixK[sys]] for a reduced model.
- When the convergence is slow for the frequency required.
- Rule of thumb: use a medium point for your frequency range.

MOR for ANSYS

IMTEK

ANSYS Model:
 EMAT, FULL files

$y=C x$ System, ODEs

Solvers: TAUCS, UMFPACK, ATLAS
www.imtek.uni-freiburg.de/simulation/mor4ansys/ code in $\mathrm{C}++$, binary, publications

MOR Timing with TAUCS

Dimension	nnz	Time is ANSYS 8.1	Factoring	30 vectors
4267	20861	0.63	0.31	0.59
11445	93781	2.2	1.3	2.7
20360	265113	15	12	14
79171	2215638	230	190	120
152943	5887290	95	91	120
180597	7004750	150	120	160
375801	15039875	490	410	420

MOR as Fast Solver

- Model reduction time is about twice as time for a static solution.
\checkmark Direct solver can be used.
\checkmark Dimension of the reduced model is about 30 .
\checkmark Time for an iterative solver is comparable with direct solver.
\checkmark Single expansion point.
- Simulation of the reduced model is a few seconds.
- It is advantageous to use MOR even you use the reduced model only once:
\checkmark Design,
\checkmark Geometry optimization.

MOR for ANSYS

- Command line tool, mor_for_ansys.
- Read files, computes and then write files.
-Current version is 1.83 .
- There could be problems with reading matrices.
- Another tool, dumpmatrices allows us to overcome problems with reading ANSYS files.

Notation

- Ordinary Differential Equation
\checkmark First Order

$$
\begin{gathered}
E \dot{x}=A x+B u \\
y=C x
\end{gathered}
$$

\checkmark Second Order

$$
\begin{gathered}
M \ddot{x}+E \dot{x}+K x=B u \\
y=C x
\end{gathered}
$$

- MOR 4 ANSYS can read matrices from ANSYS.
- MOR 4 ANSYS can read matrices in the Matrix Market format as well.

FULL and EMAT files

- EMAT

\checkmark File with element matrices.

-FULL

\checkmark File with global matrices.
\checkmark Load vector, Dirichlet and equation constraints.
\checkmark Must be for symbolic assembly (sparse solver).
\checkmark Problem to have all matrices.

- mor_for_ansys uses both files.
\checkmark When different coordinate systems have been used during modeling, EMAT file does not give us correct result.
\checkmark Matrices and load vector must be real valued.

Running mor_for_ansys

- Several outputs mor_for_ansys file.full file.emat -N 30 -C output.txt -s UMFPACK
- Complete output
mor_for_ansys file.full file.emat -N 30 -f -s UMFPACK
- Reading matrices in the Matrix Market format mor_for_ansys -M base_name -N 30 -s UMFPACK
- Solvers
\checkmark UMFPACK for unsymmetric matrices
\checkmark TAUCS for symmetric matrices

Running dumpmatrices

- Reads either FULL or EMAT file.
- Can write original matrices before the application of constraints.
- Several outputs dumpmatrices file.full -C output.txt -w base_name
- Complete output
dumpmatrices file.full -w base_name

MOR for ANSYS and dumpmatrices

IMTEK

Can FULL and EMAT files from a static analysis be used?

$$
\begin{aligned}
& \text { Use MOR for ANSYS } \\
& \text { directly. }
\end{aligned}
$$

When to Use dumpmatrices

- One of the next conditions applies:
- During modeling different coordinate systems have been used.
- Load vector is complex-valued.
-During static analysis ANSYS removes some degrees of freedom.

Conclusion

- Methods based on Hankel singular values (SLICOT)
- Implicit moment matching
- Solving a system of linear equations
- MOR for ANSYS

