Automatic Compact Modelling for MEMS: Applications, Methods and Tools

Lecture 2: Implicit Moment Matching via Arnoldi Process: Theory

Evgenii B. Rudnyi, Jan G. Korvink http://www.imtek.uni-freiburg.de/simulation/mor4ansys/

Outline

• Methods based on Hankel singular values (SLICOT)

• Implicit moment matching

•Solving a system of linear equations

• MOR for ANSYS

Evgenii B. Rudnyi, Eurosime, 2006

MOR and Transfer Function

•Representations in time and Laplace domains are equivalent.

• Evaluating the transfer function along the imaginary axis is enough (Bode plot).

• Model reduction is done in the Laplace domain:

✓ Approximating the transfer function.

✓ Formal dimension is the same.

✓ Complexity is reduced.

$$Y(s) = H(s)U(s)$$

$$y(t) = \frac{1}{2\pi i} \int_{\gamma - i\infty}^{\gamma + i\infty} Y(s) e^{st} ds$$

$$H(i\omega) = C(i\omega E + K)^{-1}B$$

$$\hat{H}(i\omega) = \hat{C}(i\omega\hat{E} + \hat{K})^{-1}\hat{B}$$

Hankel Singular Values

X

•Dynamic system in the state-space form:

$$= Ax + Bu$$

$$y = Cx$$

$$H(s) = C(sI - A)^{-1}B$$

• Lyapunov equations to determine controllability and observability Gramians:

$$AP + PA^{T} + BB^{T} = 0$$
$$A^{T}Q + QA + C^{T}C = 0$$

•Hankel singular values (HSV):

✓ square root from eingenvalues for product of Gramians.

$$\sigma_i = \sqrt{\lambda_i(PQ)}$$

Global Error Estimate

- Infinity norm $\|H(s) - \hat{H}(s)\|_{\infty} =$ $= \max_{s} abs(H(s) - \hat{H}(s))$
- •Global error for a reduced model of dimension k

$$\left\| H(s) - \hat{H}(s) \right\|_{\infty} < 2(\sigma_{k+1} + \dots + \sigma_n)$$

• Model reduction success depends on the decay of HSV.

•Log10[HSV(i)] vs. its number.

• From Antoulas review.

- The theory works for stable systems. $\lambda_i(A) < 0$
 - ✓ In unstable systems something should be done with unstable poles.
- Hankel Norm
- **Approximation:**
 - ✓ Produces an optimal solution.

• Balanced Truncation

Approximation:

- ✓ Most often used.
- ✓ Faster than HNA.
- ✓ Does not preserve the stationary state.

• Singular Perturbation Approximation:

✓ Preserves the stationary state.

• Frequency-weighted model reduction. $\|V(H - \hat{H})W\|_{\infty}$

•FORTRAN Code + Examples found at: ✓http://www.slicot.de

•European Community BRITE-EURAM III Thematic Networks Programme.

- Implements all methods:
 - ✓ Balanced Truncation Appr.
 - ✓ Singular Perturbation Appr.
 - ✓ Hankel Norm Appr.
 - ✓ Frequency-weighted MOR.
- Has a parallel version.

- •Yet, the computational complexity is O(*N*³).
- •Limited to "small" systems.

Dimension	Serial	Parallel (4 processors)
600	60	25
1332	703	130
2450	4346	666
3906		2668

•The transfer function is a rational polynomial function: zeros and poles.

•Then search an approximation among rational functions.

• Expand transfer functions at some point s_0 in the Tailor series.

•Require that first moments are the same.

Moment Matching $E\dot{x} = Ax + Bu$ y = Cx $H(s) = C(sE - A)^{-1}B$ $H_{ij}(s) = \frac{(s - z_1)...(s - z_N)}{(s - p_1)...(s - p_N)}$ $\hat{H}_{ij}(s) = \frac{(s - z_1) \dots (s - z_r)}{(s - p_1) \dots (s - p_r)}$ ∞

$$H_{ij} = \sum_{0}^{n} m_i (s - s_0)^i$$

$$m_i = \hat{m}_i, \quad i = 0, \dots, r$$

- •Use matrix identity.
- •Let us take expansion point zero.
- The simplest case of a scalar transfer function.
 - ✓ Single Input Single Output.
 ✓ Input matrix is a column, output matrix is a row.

$$(I - sP)^{-1} = I + \sum_{i=1}^{\infty} P^{i} s^{i} = \sum_{i=0}^{\infty} P^{i} s^{i}$$

Moments

$$H(s) = C(sE - A)^{-1}B$$

$$(sE - A)^{-1}AA^{-1} = [A^{-1}(sE - A)]^{-1}A^{-1}$$

$$H(s) = -C(I - sA^{-1}E)^{-1}A^{-1}B$$

$$H(s) = -\left[CA^{-1}B + \sum_{i=1}^{\infty} C(A^{-1}E)^{i}A^{-1}Bs^{i}\right]$$

- Matrix *P* and vector *r*
- Right Krylov subspace
- Transposed matrix *P* and vector *l*
- Left Krylov subspace
- •Krylov subspace defines a low dimensional subspace:
 - ✓ Basis is not unique.
- Direct computation is numerically unstable because of rounding errors.

$$\{r, Pr, P^{2}r, \dots, P^{k-1}r\}$$

$$\Im_{R,k}(P, r) \qquad \Im_{k}(P, r)$$

$$\{l, P^{T}l, P^{T^{2}}l, \dots, P^{T^{k-1}}l\}$$

$$\Im_{L,k}(P, l)$$

Krvlov subspace

•Robust computational algorithms are included in 10 top algorithms of the 20th century.

Implicit Moment Matching

- •Take matrix and vector corresponding to a given expansion point.
- •Compute the orthogonal basis by the Arnoldi process.
- Project the original system on this basis.
- •One can prove that this way the reduced model matches *k* moments.

$$s_0 = 0$$
 $P = A^{-1}E$ $r = A^{-1}b$
 $V = span\{\Im(A^{-1}E, A^{-1}b)\}$

$$V = span\{r, Pr, P^2r, \dots P^{k-1}r\}$$

- Multiple inputs:
 ✓ Block Krylov Subspace,
 ✓ Block Arnoldi.
- •The Lanczos algorithm used the right and left Krylov subspaces.
 - ✓ More problems.
 - ✓ We will not consider it in this course.

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

• Projection onto lowdimensional subspace.

•Very general approach, not limited to moment matching.

• Moment matching preserves *r* moments.

 $E\dot{x} + Kx = Bu$

$$V^T E V \dot{z} + V^T K V z = V^T B u$$

$$E_r$$
 · + K_r · = F_r ·

• Matrix from the left is different in the Lanczos algorithm.

Evgenii B. Rudnyi, Eurosime, 2006

	Arnoldi	Lanczos
Accuracy of approximation	r moments match	2 <i>r</i> moments match
Computational complexity		
Invariance properties	×	>
Numerical stability	 ✓ 	×
Preservation of stability and passivity		×
Complete output approximation	 ✓ 	×

- Input: matrix *P* and vector *r*
- Normalize vector $v_1 = r/|r|$
- Do (*i* = 2, *k*):
 - ✓ Next vector w = P v_{i-1}
 ✓ Orthogonalize w in respect to {v₁, ..., v_{i-1}}
 ✓ Normalize v_i = w / |w|
- Output: $V = \{v_1, ..., v_k\}$ $\checkmark V$ is orthogonal $V^T V = I$
- Input vector must not be zero.
- Deflation can happen:
 - ✓ Stop earlier.

- Orthogonalization ✓ Gram-Schmidt
- Input: *w* and {*v*₁, ..., *v*_{*i*-1}}
- **Do** (j = 1, i-1): $\checkmark w = w - (w^T v_i)v_i$
- •Output: new w

•Could be generalized to multiple inputs (see Freund).

Sparse Matrices

Structure Plot

City Plot

• In the finite element method matrices are sparse.

•We have to store only nonzeros entries.

•nnz - number of nonzeros.

• Matrix Market:

✓ http://math.nist.gov/MatrixMarket✓ File format,

- ✓ Many matrices.
- Matrix BCSSTK19

•The Arnoldi process requires matrix vector product.

- •Yet, we have a matrix inverse.
- •Instead solve a system of linear equations.
- This is the biggest computational cost:
 - ✓ Number of vectors x time for linear solve.

$$v_{i+1} = A^{-1}Ev_i$$

$$u_{i+1} = A^{-1}u_i$$

$$Au_{i+1} = u_i$$

•The only right hand side is different.

•Can be used to speed it up.

- Gauss elimination.
- Positive definite matrices:
 - ✓ Cholesky decomposition.
- General symmetric matrix: ✓ L^TDL decomposition.
- Unsymmetric matrix:
 - ✓LU decomposition.

$$LUx = b$$

Ax = b $A = L^{T}L$ $A = L^{T}DL$

Direct Solvers

- A = LU
- 1) Factorization (expansive).
 2) Back substitution (cheap).
 Well suited for model reduction.

- Factorization creates fill-in.
- Factor size depends on the matrix structure.
- •Reordering reduces fill-in in the factor.

- •Symmetric matrix
 - ✓79171x79171
 - ✓nnz 2215638 (in its half) ~ 2.2 10⁶

method	time to reorder	nnz in factor	time to factor
genmmd	1.9	130 10 ⁶	1166
md	4.0	160 10 ⁶	1684
mmd	4.0	127 10 ⁶	1135
amd	1.4	127 10 ⁶	1135
metis	17	47 10 ⁶	239

Iterative Solvers

• Direct solvers have an upper limit because of memory requirements.

- •Use iterative solvers:
 - ✓ Could be faster.
 - ✓ The only possibility for high dimensions.
- •However, the success highly depends on a preconditioner.
- Model reduction still could be advantageous.

- •4 Gb of RAM
- Structural mechanics
- problem:
 - ✓ 375 801 DoFs ✓ 15 039 875 nnz
- Sparse solver:

490 s

PCG solver with 1e-8 tolerance: 290 s
PCG solver with 1e-12 tolerance: 420 s

- Expansion around zero preserves stationary state.
- In principle, one can take any expansion point.

$$E\dot{x} = Ax + Bu$$
$$y = Cx$$

$$G(s) = C(sE - A)^{-1}B$$

- •Complex expansion point leads to problems.
- One can take several expansion points. $[(s-s_0)E + s_0E A]^{-1}(s_0E A)(s_0E A)^{-1}$

$$H(s) = C \Big[I + (s - s_0) (s_0 E - A)^{-1} E \Big]^{-1} (s_0 E - A)^{-1} B$$

- •When the stiffness matrix is degenerated.
 - ✓ Check Eigenvalues [MatrixK[sys]] for a reduced model.
- •When the convergence is slow for the frequency required.
- •Rule of thumb: use a medium point for your frequency range.

MOR Timing with TAUCS

Dimension	nnz	Time is ANSYS 8.1	Factoring	30 vectors
4 267	20 861	0.63	0.31	0.59
11 445	93 781	2.2	1.3	2.7
20 360	265 113	15	12	14
79 171	2 215 638	230	190	120
152 943	5 887 290	95	91	120
180 597	7 004 750	150	120	160
375 801	15 039 875	490	410	420

Evgenii B. Rudnyi, Eurosime, 2006

MOR as Fast Solver

•Model reduction time is about twice as time for a static solution.

- ✓ Direct solver can be used.
- ✓ Dimension of the reduced model is about 30.
- ✓ Time for an iterative solver is comparable with direct solver.
- ✓ Single expansion point.

• Simulation of the reduced model is a few seconds.

- It is advantageous to use MOR even you use the reduced model only once:
 - ✓Design,
 - ✓ Geometry optimization.

• Command line tool, mor_for_ansys.

- Read files, computes and then write files.
- Current version is 1.83.

- There could be problems with reading matrices.
- •Another tool, dumpmatrices allows us to overcome problems with reading ANSYS files.

Notation

• Ordinary Differential Equation ✓ First Order

$$E\dot{x} = Ax + Bu$$

y = Cx

✓ Second Order

$$M\ddot{x} + E\dot{x} + Kx = Bu$$
$$y = Cx$$

- MOR 4 ANSYS can read matrices from ANSYS.
- MOR 4 ANSYS can read matrices in the Matrix Market format as well.

FULL and EMAT files

• EMAT

✓ File with element matrices.

• FULL

- ✓ File with global matrices.
- ✓ Load vector, Dirichlet and equation constraints.
- ✓ Must be for symbolic assembly (sparse solver).
- ✓ Problem to have all matrices.

•mor_for_ansys uses both files.

- ✓When different coordinate systems have been used during modeling, EMAT file does not give us correct result.
- ✓ Matrices and load vector must be real valued.

Several outputs

mor_for_ansys file.full file.emat –N 30 -C output.txt -s UMFPACK

• Complete output

mor_for_ansys file.full file.emat –N 30 -f -s UMFPACK

• Reading matrices in the Matrix Market format

mor_for_ansys -M base_name –N 30 -s UMFPACK

• Solvers

- ✓ UMFPACK for unsymmetric matrices
- ✓TAUCS for symmetric matrices

- Reads either FULL or EMAT file.
- •Can write original matrices before the application of constraints.
- Several outputs

dumpmatrices file.full -C output.txt -w base_name

• Complete output

dumpmatrices file.full -w base_name

•One of the next conditions applies:

- During modeling different coordinate systems have been used.
- Load vector is complex-valued.
- During static analysis ANSYS removes some degrees of freedom.

• Methods based on Hankel singular values (SLICOT)

• Implicit moment matching

•Solving a system of linear equations

• MOR for ANSYS

Evgenii B. Rudnyi, Eurosime, 2006