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Outline

•Methods based on Hankel

singular values (SLICOT)

•Implicit moment matching

•Solving a system of linear

equations

•MOR for ANSYS
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MOR and Transfer Function

•Representations in time

and Laplace domains are

equivalent.

•Evaluating the transfer

function along the imaginary

axis is enough (Bode plot).

•Model reduction is done in

the Laplace domain:
Approximating the transfer
function.

Formal dimension is the same.

Complexity is reduced.

H(i ) = C(i E + K)
1
B

Y (s) = H(s)U(s)

y(t) =
1

2 i
Y (s)e

st
ds

i

+i

ˆ H (i ) = ˆ C (i ˆ E + ˆ K )
1 ˆ B 
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Hankel Singular Values

•Dynamic system in the

state-space form:

•Lyapunov equations to

determine controllability

and observability

Gramians:

•Hankel singular values

(HSV):
square root from eingenvalues
for product of Gramians.

˙ x = Ax + Bu

y = Cx
H(s) = C(sI A)

1
B

AP + PA
T

+ BB
T

= 0

A
T
Q+QA + C

T
C = 0

i = i (PQ)
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Global Error Estimate

•Infinity norm

•Global error for a reduced

model of dimension k

•Model reduction success

depends on the decay of

HSV.

•Log10[HSV(i)] vs. its

number.

•From Antoulas review.

H(s) ˆ H (s) =

= maxs abs(H(s) ˆ H (s))

  

H(s) ˆ H (s) <

2( k+1 +K+ n )
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Methods Based on HSV

•The theory works for stable

systems.

In unstable systems something
should be done with unstable
poles.

•Hankel Norm

Approximation:
Produces an optimal solution.

•Balanced Truncation

Approximation:
Most often used.

Faster than HNA.

Does not preserve the stationary
state.

•Singular Perturbation

Approximation:
Preserves the stationary state.

•Frequency-weighted model

reduction.

i (A) < 0

V H ˆ H ( )W
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SLICOT

•FORTRAN Code +

Examples found at:
http://www.slicot.de

•European Community

BRITE-EURAM III Thematic

Networks Programme.

•Implements all methods:

Balanced Truncation Appr.

Singular Perturbation Appr.

Hankel Norm Appr.

Frequency-weighted MOR.

•Has a parallel version.

•Yet, the computational

complexity is O(N3).

•Limited to “small” systems.

26683906

66643462450

1307031332

2560600

Parallel (4

processors)

SerialDimension
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Moment Matching

•The transfer function is a
rational polynomial
function: zeros and poles.

•Then search an
approximation among
rational functions.

•Expand transfer functions
at some point s0 in the Tailor
series.

•Require that first moments
are the same.

E˙ x = Ax + Bu

y = Cx

H(s) = C sE A( )
1
B

  

Hij (s) =
s z1( )K s zN( )

s p1( )K s pN( )

  

ˆ H ij (s) =
s z1( )K s zr( )

s p1( )K s pr( )

Hij = mi (s s0)
i

0

  mi = ˆ m i , i = 0,K,r
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Moments

•Use matrix identity.

•Let us take expansion

point zero.

•The simplest case of a

scalar transfer function.
Single Input - Single Output.

Input matrix is a column,
output matrix is a row.

H(s) = C sE A( )
1
B

(I sP)
1

= I + P
i
s
i

i=1

= P
i
s
i

i=0

(sE A)
1
AA

1
= [A

1
(sE A)]

1
A
1

H(s) = C I sA
1
E( )

1
A
1
B

H(s) = CA
1
B + C(A

1
E)

i
A
1
Bs

i

i=1
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Krylov subspace

•Matrix P and vector r

•Right Krylov subspace

•Transposed matrix P and

vector l

•Left Krylov subspace

•Krylov subspace defines a

low dimensional subspace:
Basis is not unique.

•Direct computation is

numerically unstable

because of rounding errors.

•Robust computational

algorithms are included in 10

top algorithms of the 20th

century.

  {r,Pr,P
2
r,K,P

k 1
r}

  {l,P
T
l,P

T
2
l,K,P

T
k 1
l}

R,k (P,r)

L,k (P,l)

k (P,r)
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Implicit Moment Matching

•Take matrix and vector

corresponding to a given

expansion point.

•Compute the orthogonal

basis by the Arnoldi process.

•Project the original system

on this basis.

•One can prove that this way

the reduced model matches k

moments.

•Multiple inputs:
Block Krylov Subspace,

Block Arnoldi.

•The Lanczos algorithm

used the right and left

Krylov subspaces.
More problems.

We will not consider it in this
course.

s0 = 0 P = A
1
E r = A

1
b

V = span{ (A
1
E,A

1
b)}

  V = span{r,Pr,P
2
r,KP

k 1
r}
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Projection

•Projection onto low-
dimensional subspace.

•Very general approach,
not limited to moment
matching.

•Moment matching
preserves r moments.

x =Vz +

x V

z

=

E˙ x + Kx = Bu

V
T

EV˙ z + V
T

KVz = V
T

Bu

E

E
r

•Matrix from the left is different

in the Lanczos algorithm.
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Arnoldi vs. Lanczos

Complete output approximation

Preservation of

stability and passivity

Numerical stability

Invariance properties

Computational complexity

2r moments

match
r moments matchAccuracy of approximation

LanczosArnoldi
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Arnoldi Process

•Input: matrix P and vector r

•Normalize vector v1 = r/|r|

•Do (i = 2, k):
Next vector w = P vi-1

Orthogonalize w in respect to {v1,
…, vi-1}

Normalize vi = w/|w|

•Output: V={v1, …, vk}
V is orthogonal VTV=I

•Input vector must not be

zero.

•Deflation can happen:
Stop earlier.

•Orthogonalization

Gram-Schmidt

•Input: w and {v1, …, vi-1}

•Do (j = 1, i-1):

w = w - (wT vi)vi

•Output: new w

•Could be generalized to

multiple inputs (see Freund).
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Sparse Matrices

•In the finite element

method matrices are sparse.

•We have to store only

nonzeros entries.

•nnz - number of nonzeros.

•Matrix Market:
http://math.nist.gov/MatrixMarket

File format,

Many matrices.

•Matrix BCSSTK19
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Treating Matrix Inverse

•The Arnoldi process

requires matrix vector

product.

•Yet, we have a matrix

inverse.

•Instead solve a system of

linear equations.

•This is the biggest

computational cost:

Number of vectors x time for
linear solve.

vi+1 = A
1
Evi

ui+1 = A
1
ui

Aui+1 = ui

•The only right hand side is

different.

•Can be used to speed it up.
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Direct Solvers

•Gauss elimination.

•Positive definite matrices:
Cholesky decomposition.

•General symmetric matrix:

LTDL decomposition.

•Unsymmetric matrix:
LU decomposition. •1) Factorization (expansive).

•2) Back substitution

(cheap).

•Well suited for model

reduction.

Ax = b

A = L
T
L

A = L
T
DL

A = LU

LUx = b



Evgenii B. Rudnyi, Eurosime, 2006
ALBERT-LUDWIGS-

UNIVERSITÄT FREIBURG

Reordering

•Factorization creates fill-in.

•Factor size depends on the

matrix structure.

•Reordering reduces fill-in

in the factor.

23947 10617metis

1135127 1061.4amd

1135127 1064.0mmd

1684160 1064.0md

1166130 1061.9genmmd

time to

factor

nnz in

factor

time to

reorder

method

•Symmetric matrix

79171x79171

nnz 2215638 (in its half) ~ 2.2 106
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Iterative Solvers

•Direct solvers have an

upper limit because of

memory requirements.

•Use iterative solvers:

Could be faster.

The only possibility for high
dimensions.

•However, the success

highly depends on a

preconditioner.

•Model reduction still could

be advantageous.

•4 Gb of RAM

•Structural mechanics

problem:
375 801 DoFs

15 039 875 nnz

•Sparse solver:                   

490 s

•PCG solver with 1e-8

tolerance:  290 s

•PCG solver with 1e-12

tolerance: 420 s
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Nonzero Expansion Point

• Expansion around zero

preserves stationary state.

•In principle, one can take any

expansion point.

•Complex expansion point

leads to problems.

•One can take several

expansion points.

E˙ x = Ax + Bu

y = Cx

G(s) = C sE A( )
1
B

H(s) = C I + s s0( ) s0E A( )
1
E[ ]

1

s0E A( )
1
B

s s0( )E + s0E A[ ]
1
s0E A( ) s0E A( )

1
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When to Use Nonzero Expansion Point

•When the stiffness matrix is degenerated.
Check Eigenvalues[MatrixK[sys]] for a reduced model.

•When the convergence is slow for the frequency

required.

•Rule of thumb: use a medium point for your

frequency range.
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MOR for ANSYS

ANSYS Model:

EMAT, FULL

files

Matrix Market 

format

Linear Dynamic 

System, ODEs

M˙ ̇ x + E˙ x + Kx = Bu

y = Cx
MOR Algorithm

Solvers: TAUCS, 

UMFPACK,

 ATLAS

Low-dimensional

subspace

x =Vz +

www.imtek.uni-freiburg.de/simulation/mor4ansys/

code in C++, binary, publications
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MOR Timing with TAUCS

420

160

120

120

14

2.7

0.59

30 vectors

410

120

91

190

12

1.3

0.31

Factoring

15 039 875

7 004 750

5 887 290

2 215 638

265 113

93 781

20 861

nnz

490375 801

150180 597

95152 943

23079 171

1520 360

2.211 445

0.634 267

Time is
ANSYS

8.1

Dimension
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MOR as Fast Solver

•Model reduction time is about twice as time for a static

solution.
Direct solver can be used.

Dimension of the reduced model is about 30.

Time for an iterative solver is comparable with direct solver.

Single expansion point.

•Simulation of the reduced model is a few seconds.

•It is advantageous to use MOR even you use the reduced

model only once:

Design,

Geometry optimization.
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MOR for ANSYS

•Command line tool, mor_for_ansys.

•Read files, computes and then write files.

•Current version is 1.83.

•There could be problems with reading matrices.

•Another tool, dumpmatrices allows us to overcome

problems with reading ANSYS files.
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Notation

• Ordinary Differential Equation
First Order

Second Order

• MOR 4 ANSYS can read matrices from ANSYS.

• MOR 4 ANSYS can read matrices in the Matrix
Market format as well.

E ˙ x = Ax + Bu

y = Cx

M˙ ̇ x + E ˙ x + Kx = Bu

y = Cx
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FULL and EMAT files

•EMAT
File with element matrices.

•FULL
File with global matrices.

Load vector, Dirichlet and equation constraints.

Must be for symbolic assembly (sparse solver).

Problem to have all matrices.

•mor_for_ansys uses both files.
When different coordinate systems have been used during
modeling, EMAT file does not give us correct result.

Matrices and load vector must be real valued.
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Running mor_for_ansys

•Several outputs
mor_for_ansys file.full file.emat –N 30 -C output.txt -s UMFPACK

•Complete output
mor_for_ansys file.full file.emat –N 30 -f -s UMFPACK

•Reading matrices in the Matrix Market format
mor_for_ansys -M base_name –N 30 -s UMFPACK

•Solvers
UMFPACK for unsymmetric matrices

TAUCS for symmetric matrices
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Running dumpmatrices

•Reads either FULL or EMAT file.

•Can write original matrices before the application

of constraints.

•Several outputs
dumpmatrices file.full -C output.txt -w base_name

•Complete output
dumpmatrices file.full -w base_name
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MOR for ANSYS and dumpmatrices

Can FULL and EMAT files 
from a static analysis be used?

Use MOR for ANSYS

directly.

Use dumpmatrices

to prepare system matrices

Yes No
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When to Use dumpmatrices

•One of the next conditions applies:

•During modeling different coordinate systems

have been used.

•Load vector is complex-valued.

•During static analysis ANSYS removes some

degrees of freedom.
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Conclusion

•Methods based on Hankel

singular values (SLICOT)

•Implicit moment matching

•Solving a system of linear

equations

•MOR for ANSYS


