Automatic Compact Modelling for MEMS: Applications, Methods and Tools

Lecture 3: Implicit Moment Matching via Arnoldi Process: Practice

Evgenii B. Rudnyi, Jan G. Korvink http://www.imtek.uni-freiburg.de/simulation/mor4ansys/

Outline

- Electro-thermal MEMS (Tamara Bechtold)
- Structural mechanics
 - ✓ Impeller model (Prof Takano, Ritsumeikan)
 - ✓ Geometry optimization of an accelerometer (Prof Han, ANU)
- •Piezoelectric actuators for control (Soong-Oh Han, Darmstadt)
- •Pre-stressed small-signal analysis for RF-MEMS (Laura Del Tin)
- Thermomechanical models (Elena Zukowski)
- •Acoustics including fluid-structure interactions (Srinivas Puri, Oxford)

Tamara Bechtold

Model Order Reduction of Electro-Thermal MEMS

Dissertation zur Erlangung des Doktorgrades

der Fakultät für Angewandte Wissenschaften

der Albert-Ludwigs Universität Freiburg im Breisgau

Tamara Bechtold

2005

Thesis available at MOR for ANSYS site.
Next slides are from her defense (slightly different

notation).

• Tamara.Bechtold@philips.com

Evgenii B. Rudnyi, Eurosime, 2006

MEMS and Electro-Thermal Simulation

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Microthruster

(Illustration courtesy of C. Rossi, LAAS-CNRS)

Tunable optical filter

(Illustration courtesy of D. Hohlfeld, IMTEK)

Gas sensor

(Illustration courtesy of J. Wöllenstein, FhG IPM)

Research Path

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

PDE:
$$\nabla(\kappa \ \nabla T) + Q - \rho C_p \frac{\partial T}{\partial t} = 0$$

spatial
discretization
ODE:
$$CT + KT = \sum f_{sources} + \sum f_{BC}$$
thermal BC:
 $\forall r \in \Omega :$
 $t = 0, \quad T(r,t) = T_0(r)$
 $\forall r \in \partial\Omega :$
 $T(r) = T_{prescribed}(t)$
 $q_{\perp}(r) = q_{prescribed}(t)$
 $q_{\perp}(r) = h \cdot (T - T_{amb})$
 $q_{emitted}(r) = \varepsilon \sigma A(T_{surf}^4 - T_{amb}^4)$

suitable dimensions for accurate MEMS models ≥ 100,000 nodes need for dynamic compact thermal modeling (DCTM)

Good match in the frequency domain around expansion point: $s_0=0$

Step response error almost vanishes within the initial 0.05s.

Approximating Complete Output

• If output array *E* is a unity matrix than

$$y_r = E^T \cdot V \cdot T = V \cdot z = \hat{T}_i$$

• *E* does not participate in Arnoldi, so each output is equally approximated

Mean Square Relative Difference

$$MSRD(t) = \sqrt{\frac{\sum_{i=1}^{n} \left(\frac{T_{i}(t) - \hat{T_{i}}(t)}{T_{i}(t)}\right)^{2}}{n}}$$

Nonlinear Input

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Error Indicators for Automatic MOR

• Key question :

What is a suitable order of the reduced system for a desired accuracy?

- "Rule of thumb": r = 50
- Proposed engineering approaches:
 - **\Box** comparison of reduced systems of order *r* and *r* + 1
 - computation of Hankel singular values of the reduced system
 - sequential MOR

Convergence of Relative Error

True error:
$$E_r(s) = \frac{|G(s) - G_r(s)|}{|G(s)|}$$

IMTEK

Error indicator:
$$\hat{E}_r(s) = \frac{|G_r(s) - G_{r+1}(s)|}{|G_r(s)|}$$

Main result:

$$E_r(s) \approx \hat{E}_r(s)$$

• Choose a maximum dimension for mor_for_ansys (-N)
✓ A good starting point is from 30 (default) to 100.

• Choose maximum frequency for monitoring error (application-dependent).

•Use LocalErrorIndicator to compute an error estimate as a function of a model dimension.

•A good idea is from time to time to compute a harmonic response in ANSYS and use LocalError to check whether LocalErrorIndicator is good enough.

Sequential MOR

Use Arnoldi algorithm for reduction from n to r_1 .

$$|G(s)| - |G_{r_2}(s)| \le \varepsilon_1 + \varepsilon_2$$

Control theory for further reduction from r_1 to r_2 .

SPA (Singular Perturbation Approximation), $r_1 = 50$, $r_2 = 5$

Second Order Systems

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

• Ignore the damping matrix during model reduction.

$$\begin{aligned} M\ddot{x} + E\dot{x} + Kx &= Bu \\ y &= Cx \end{aligned} \qquad \mathfrak{S}_{L,k}(K^{-1}M, K^{-1}B) \end{aligned}$$

$$E = \alpha M + \beta K$$

- The damping matrix can be obtained from the reduced matrices.
- •You have alpha and beta as parameters.
- Moment are matched!

$$V^T E V = \alpha V^T M V + \beta V^T K V^T$$

 $\hat{E} = \alpha \hat{M} + \beta \hat{K}$

•Default in MOR for ANSYS.

Rotor Dynamics with MOR

- ✓Dr Asai, m-asai@se.ritsumei.ac.jp
- ✓ Prof Takano
- ✓ Prof Toriyama

• Angular acceleration plus a load due to imperfection in design.

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Number of elements 17653 Number of nodes 30106

UNIVERSITÄT FREIBURG

Optimization of a piezoresistive micro accelerometer

7330/96 200kU 222E1 SE

Design and fabrication of piezoresistive cantilever microaccelerometer arrays with a symmetrically bonded proof-mass

symmetrica

proof-mass

†: Ko J S, Cho Y H, Kwak B M, and Park K 1998 IMECE'98

Harmonic analysis

Full ANS 15	$\mathbf{MOK}(\mathbf{II}=\mathbf{J})$
6 318	5
11 618	60
-	6
-	5
11 618	71
	6 318 11 618 - - 11 618

Transient analysis

Time (in second)	Full ANSYS	MOR (n=5)
Total DoF	6 318	5
Time in ANSYS	4 000	60
Time in mor4ansys	-	5
Time in Mathematica	-	13
Total time	4 000	78

Optimization using MOR

$$\begin{bmatrix} M & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \ddot{u} \\ \ddot{V} \end{bmatrix} + \begin{bmatrix} E & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \dot{u} \\ \dot{V} \end{bmatrix} + \begin{bmatrix} K & K^z \\ K^z & K^d \end{bmatrix} \begin{bmatrix} u \\ V \end{bmatrix} = \begin{bmatrix} f \\ l \end{bmatrix}$$

- •A fully coupled problem.
- Differential-algebraic equations.
- Stiffness matrix is indefinite.
- MOR for ANSYS 1.83
 - ✓ L^TDL solver is slow.
 - ✓ Use LU (but needs more memory).
- •Slides by Soong-Oh Han, han@szm.tu-darmstadt.de

Modelling of Smart Structures with Piezoceramic Actuators Some Sample Systems ≷ Piezo Beam Demonstrator 100 Active Brake System ... Active Oilpan, Active Milling Machinery, etc. Active Façade Dipl.-Ing. Soong-Oh Han

TECHNISCHE UNIVERSITÄT

DARMSTADT

Modelling of Smart Structures with Piezoceramic Actuators

Goal:

Modelling of complete active systems for vibration and noise reduction with implemented control to perform sensitvity and damage analyses

Main Problem:

- FEM very suitable to determine dynamic behaviour of piezoceramic components and structures in general, but NOT capable of implementing control methods
- Matlab/Simulink very suitable to implement and compare control algorithms but NOT capable of dealing with high order DOF models

Solution:

Obtaining a reduced model from the FEM model using MOR4Ansys and implementation in the Matlab environment

Advantages (compared to other reduction methods):

- Electric DOFs and In- /Outputs of the FEM model are maintained in the reduced system
- Automated computation of the reduced system possible, suitable for sensitivity analyses
- Very good performance of reduced system compared to the FEM model

Dipl.-Ing. Soong-Oh Han

Sample System: Beam Demonstrator

- Eigenfrequencies 67.103 Hz, 406.36 Hz, 1147.3 Hz, ...
- 2982 DOFs

- Eigenfrequencies 66.134 Hz, 402.87 Hz, 1137.3 Hz, ...
- 30 DOFs
- Input 1: Displacement at the clamping
- Input 2: Voltage applied on piezo at clamping
- Control Variable: Voltage applied on piezo at free end

Dipl.-Ing. Soong-Oh Han

Sample System: Active Oilpan

Dipl.-Ing. Soong-Oh Han

Electromechanical System

- •TRANS126
 - ✓ capacitive response.
- Nonlinear analysis.
- Pre-stressed harmonic analysis.
- •Slides by Laura Del Tin, deltin@imtek.uni-freiburg.de
- •Tutorial available at MOR for ANSYS site.

Case Study

Free-Free beam one-port vertical resonator

Wang, Nguyen, "VHF Free Free Beam High-Q Micromechanical Resonators", IEEE J. of Micromechanical system, vol. 9, n. 3, September 2000

ANSYS FEM model with trans126 element

Results

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Krylov Subspace Techniques for Coupled Structural Acoustic Analysis

R Srinivasan Puri, Dr. Denise Morrey

Oxford Brookes University, Vehicle Engineering Group, School of Technology, Headington , Oxford OX3 0BD United Kingdom.

Problem Description

Compute pressure level at drivers ear location (automobile or an aircraft interior) under structural or acoustic excitation.

Classical fully coupled FSI Formulation:

• The Direct formulation cannot be avoided in most cases especially if spatial damping treatment is present.

- Unsymmetric Mass, Stiffness Matrix increases computational expense.
- Modelling the final trim parts and joints leads to very high mesh density, and results in huge computational time.

Test Case: 1

Clamped undamped Aluminium plate of 1m x 1m backed by a rigid walled cavity of dimensions 1m x 1m x 1m.

Fig:2: Coupled plate/cavity FE Model

- Point source excitation on structural node of the coupled model
- Compute resultant noise transfer function (P/F) at certain points in the fluid domain.

Test Case: 2

Test structure made of a combination of beams and plates.

Fig:2: Structural FE Model

Fig:2: Coupled FE Model

• 2 Point sources - global Y, Z excitation - on structural nodes of the structural portion of the coupled model

• Compute resultant noise transfer function (P/F) at certain points in the fluid domain.

Results: Accuracy of Projection Framework

Test Case: 1

OXFORD

BROOKES

Order of higher dimensional system: 13,320

Order of reduced order model : 35 (Optimum)

Vehicle Engineering Group

Results: Accuracy of projection framework

Test Case: 1 (Contd..)

OXFORD

BROOKES

Order of higher dimensional system: 13,320

Order of reduced order model : 35 (Optimum)

Vehicle Engineering Group

Results: Accuracy of projection framework

Test Case: 2

OXFORD

BROOKES

Order of higher dimensional system: 32,179

Order of reduced order model : 170 (Optimum)

Results: Computational Times

Model	Elements	DOF's	ANSYS Direct	MOR via Arnoldi	Reduction
TC ¹	8400	11427	2906 s	27.8 s	99.04 %
TC ²	14220	29413	16530 s	169.4 s	98.97 %

Table 1 – Computational Times; TC1: Test Case-1; TC2: Test Case-2.

Model	ANSYS Stationary	Read Matrices , Arnoldi Vector Generation	Projection of Matrices	Reduced model Simulation	Total: MOR via Arnoldi
TC ¹	6 s	21.3 s (35 Vectors)	0.4 s	0.2 s	27.8 s
TC ²	4 s	144.7 s (170 Vectors)	14.7 s	6 s	169.4 s

Table 2 – MOR Split Computational Times; TC1: Test Case-1; TC2: Test Case-2.

- Electro-thermal MEMS
- Structural mechanics
- Piezoelectric actuators for control
- Pre-stressed small-signal analysis for RF-MEMS
- Thermomechanical models
- Acoustics including fluid-structure interactions

