Statistical Thermodynamics and Monte-Carlo

Evgenii B. Rudnyi and Jan G. Korvink IMTEK Albert Ludwig University Freiburg, Germany

Learning Goals

- From Micro to Macro
- Statistical Mechanics (Statistical Thermodynamics)
- Monte-Carlo Method
- Polymers
 - Lattice Model and Random Walk

References

- P. W. Atkins, *Physical Chemistry*.
- A.R.Leach, Molecular Modelling: Principles and Applications.
- I. Beichl, F. Sullivan, *The*

Metropolis algorithm, Comp. Sci. Eng. 2000, v. 2, N 1, p. 65-69 (The Ten 10 Algorithms).

On-line Resources

- D. Kofke, Molecular Simulation, www.cheme.buffalo.edu/ courses/ce530/Text/text.html
 - A survey of statistical mechanics as it pertains to molecular simulation
 - Markov processes
 - Monte Carlo simulation
 - Simple biasing methods

Macro Properties

 Pressure, Diffusion coefficient, Average energy, Temperature
 Atomic effects are smeared.

Micro Properties

Classical Mechanics:

 Positions and velocities / momenta of the atoms

Quantum Mechanics / Quantum Chemistry:

Energy is quantized

- Energies of system states and their degeneracies $\{E_{i}, \Omega_{i}\}$
 - Energies and a number of eigenstates depend on volume.
 - For a system with a large number of particles Ω_i is huge and the energy levels are very close.

From Micro to Macro

Two Approaches Molecular Dynamics -Time average:

- Classical Atomic Force, Classical Particle Mechanics -Newton mechanics
- Integrating transient
 Schrödinger equation

Statistical Mechanics -Ensemble average:

No time, net effect of many particles

- Introduces temperature and entropy.
- Classical and quantum statistics
 - Classical statistics leads to paradoxes: need quantum statistics to solve them.
 - It is easier to derive statistical mechanics from quantum statistics.
 - In practice: quasi-classical approach.
- Gives rise to Monte-Carlo method.

Statistical Mechanics

Overview

- Ensemble
- Microcanonical Ensemble
 - Basic Postulate
 - Ergodic Hypothesis
 - Non-ergodic system
- Canonical Ensemble
 - Definition
 - Temperature
 - Boltzmann Distribution
 - Partition Function
 - Classical Statistics
- Other Ensembles
- Classical vs. Quantum

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Closed-Form Solutions

Statistical Mechanics

Ensemble

- Macro properties are the same.
- Micro properties are different.
- Each micro state has some probability.
- Distribution function describes everything.
- Ensemble average for property
 D (*P* is the probability)
 - quantum $\langle D \rangle = \sum_{i} D_{i} P_{i}$
 - classical:

$$\langle D \rangle = \int P(\mathbf{p}^N, \mathbf{r}^N) D(\mathbf{p}^N, \mathbf{r}^N) d\mathbf{p}^N d\mathbf{r}^N$$

Basic Postulate

 Energy, volume and a number of particles are constant.

Quantum statistics

- Ω(N, V, E): Number of eigenstates of energy E for system with N particles in volume V.
- Basic Postulate: System with fixed (N, V, E) likely to be in any state.
- Probability

$$P_i(N, V, E) = \frac{1}{\Omega(N, V, E)}$$

 Collection of all such states is the Microcanonical Ensemble.

Ergodic Hypothesis

• Time average of *N*, *V*, *E*:

$$\overline{D} = \lim_{t \to \infty} \frac{1}{t} \int_0^t D(t') dt'.$$

Initial conditions:

$$D(t') = D[r^{N}(t'), p^{N}(t'), r_{0}^{N}, p_{0}^{N}]$$

- Time averages should not depend on **initial conditions**.
- Ensemble average is equal to the time average $\overline{D} = \langle D \rangle$
- Time average: Molecular Dynamics
- Ensemble average: Monte-Carlo

Non-ergodic System

- If a time average does not give complete representation of full ensemble, system is nonergodic.
 - Truly nonergodic: no way there from here.
 - Practically nonergodic: very hard to find route from here to there.

Definition

- Volume and a number of particles are constant.
- Systems within the ensemble can exchange energy, but the total energy is constant.
 E₁ + E₂ = const

- After Bolzmann: take $L \rightarrow \infty$ similar systems.
- After Gibbs: put attention on a particular system, all others are surrounding.
- The most probable distribution function.
- Temperature is introduced during the treatment.
- At the end we can say, that temperature, volume and a number of particles are constant: *T*, *N*, *V* = *const*.

Canonical Ensemble

Temperature

- Energy E is **extensive** property:
 - $E = E_1 + E_2$ over subsystems.
 - The system interaction is neglected: energy is additive.
- Number of states is multiplicative:

$$\Omega(E) = \Omega_1(E_1) \times \Omega_2(E - E_1)$$

• Better use $\ln[\Omega(E)]$.

 $\ln[\Omega(E_1, E - E_1)] =$ $\ln[\Omega_1(E_1)] + \ln[\Omega_2(E - E_1)]$

- Most likely distribution of energy: $\left(\frac{\partial \ln \Omega(E_1, E - E_1)}{\partial E_1}\right)_{N, V, E} = 0$
- Temperature:

$$\left(\frac{\partial \ln \Omega_1}{\partial E_1}\right)_{N, V} = \left(\frac{\partial \ln \Omega_2}{\partial E_2}\right)_{N, V} = \beta = \frac{1}{k_B T}$$

Entropy: $S(N, V, E) = k_B \ln \Omega(N, V, E)$

Canonical Ensemble

Boltzmann Distribution

- Small **A** in contact with large heat bath **B**: $E = E_A + E_B$.
- A in state *i* with energy E_i (no degeneracy). Probability is

defined by
$$P_i = \frac{\Omega_B (E - E_i)}{\sum_j \Omega_B (E - E_j)}$$

• **Taylor** expansion about $E_i = 0$

$$\ln[\Omega_{B}(E - E_{i})] =$$
$$\ln[\Omega_{B}(E)] - E_{i} \left(\frac{\partial \ln \Omega_{B}(E)}{\partial E}\right)$$

Substitute *T* and insert into probability

$$P_i = \frac{\exp[-E_i/k_B T]}{\sum \exp[-E_i/k_B T]}$$

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Partition Function

- $Q = \sum_{j} \exp\left[-\frac{E_j}{k_B T}\right]$
- Average energy

$$\langle E \rangle = \sum_{i} \mathbf{E}_{i} P_{i} =$$

$$\frac{\sum_{i} E_{i} \exp[-E_{i}/k_{B}T]}{\sum_{i} \exp[-E_{i}/k_{B}T]} = \left(-\frac{\partial \ln[Q]}{\partial(1/k_{B}T)}\right)$$

- Helmholtz Energy • Then $E = \frac{\partial(F/T)}{\partial(1/T)}$
- Then $F = -k_B T \ln[Q]$
- F(T, V) is a potential function

and from it one can determine all other equilibria properties.

Caution

- Energy is given up to an arbitrary constant.
- It is impossible to determine a numerical value for the absolute energy, and Helmholtz energy.
 It is better

$$Q = \sum_{j} \exp[-(E_j - E_o)/k_B T]$$
$$F = E_o - k_B T \ln[Q]$$

Classical Statistics

• Energy
$$E(\boldsymbol{p}, \boldsymbol{r}) = \sum_{i}^{N} \frac{p_i^2}{2m_i} + U(\boldsymbol{r}^N)$$

 Partition function becomes an integral

$$Q = \frac{1}{h^{3N}N!} \int \exp\{-\beta E\} d\mathbf{p}^N d\mathbf{r}^N.$$

- *h* is the least action. h^{3N} makes *Z* dimensionless.
- Particles are indistinguishable, hence N!.
- Average (Starting point for

Monte-Carlo)

$$\langle D \rangle = \frac{\int \exp\{-\beta E\} D(\mathbf{p}^{N}, \mathbf{r}^{N}) d\mathbf{p}^{N} d\mathbf{r}^{N}}{\int \exp\{-\beta E\} d\mathbf{p}^{N} d\mathbf{r}^{N}}$$

 Integral over kinetic energy can be taken analytically

$$Q = \frac{1}{N!} \left(\frac{2\pi m kT}{h^2}\right)^{3N} \int \exp\{-\beta U\} d\mathbf{r}^N$$

Configuration integral

$$\langle D \rangle = \frac{\int \exp\{-\beta U\} D(\mathbf{r}^N) d\mathbf{r}^N}{\int \exp\{-\beta U\} d\mathbf{r}^N}$$

Other Ensembles, I

• From Kofka

Name	All states of:	Probability distribution	Schematic
Microcanonical (EVN)	given EVN	$\pi_i = rac{1}{\Omega}$	
Canonical (TVN)	all energies	$\pi(E_i) = \frac{1}{Q} e^{-\beta E_i}$	88899
Isothermal-isobaric (TPN)	all energies and volumes	$\pi(E_i, V_i) = \frac{1}{\Delta} e^{-\beta(E_i + PV_i)}$	88 88 9
Grand-canonical (TVµ)	all energies and molecule numbers	$\pi(E_i, N_i) = \frac{1}{\Xi} e^{-\beta(E_i + \mu N_i)}$	

Statistical Mechanics

Other Ensembles, II

• From Kofka

Ensemble	Thermodynamic Potential	Partition Function	Bridge Equation
Microcanonical	Entropy, S	$\Omega = \sum 1$	$S/k = \ln \Omega(E, V, N)$
Canonical	Helmholtz, A	$Q = \sum e^{-\beta E_i}$	$-\beta A = \ln Q(T, V, N)$
Isothermal-isobaric	Gibbs, G	$\Delta = \sum e^{-\beta(E_i + PV_i)}$	$-\beta G = \ln \Delta(T, P, N)$
Grand-canonical	Hill, L = –PV	$\Xi = \sum e^{-\beta(E_i + \mu N_i)}$	$\beta PV = \ln \Xi(T, V, \mu)$

E.B. Rudnyi, J.G. Korvink, Chair for Microsystem Simulation

Classical vs. Quantum

- Electron always a quantum particle.
- Transitional movement of molecules - always classical:
 - Enormous number of states
 - $(300 \text{ K} \text{about } 10^{30}).$
- Rotational movement of molecules - typically classical.
 - Quantum statistics might required at low temperatures.

- Vibrations depends on temperature and the wave number.
 - At 300 K classical approach for v< 100 sm⁻¹.

Statistical Mechanics

Closed-Form Solutions

- Atomic ideal gas
 - Configuration integral is equal to volume.
- Molecular ideal gas
 - $\bullet \quad E_{tot} = E_{transl} + E_{rot} + E_{vib}$
 - Rigid rotator and harmonic oscillator
- Dense gases: estimates for virial coefficients.
- Ideal crystal: Einstein and Debye approximations

- For a real crystal it is necessary to know the phonon spectra
- A variety of theories for liquids
 - None of them is really successful.

Monte-Carlo Method

Overview

- Basic Metropolis Algorithm
- Random Sampling
- Importance Sampling
- Markov Chain
- Metropolis Method
- Limits of Metropolis method

Basic Metropolis Algorithm

- Goal is to evaluate
- $\langle D \rangle = \frac{\int \exp\{-\beta[\mathbf{U}(\mathbf{r}^N)]\}D(\mathbf{r}^N)d\mathbf{r}^N}{\int \exp\{-\beta[\mathbf{U}(\mathbf{r}^N)]\}d\mathbf{r}^N}$
- For each Monte Carlo cycle:
 - Select particle *i* at random.
 - Compute particle energy
 U_i(r).
 - Give particle *i* random displacement based on the

uniform distribution

- $\boldsymbol{r}_i' = \boldsymbol{r}_i + \Delta \boldsymbol{r}.$
- Compute new energy $U_i(r')$.
- Accept transition from *r* to *r*' based on probability

 $\operatorname{accept}(r \to r') =$

min(1, exp[- β {U_i(**r**') – U_i(**r**)}]) '

$$\beta = 1/k_B T.$$

Estimate is

$$\langle D \rangle \approx \frac{1}{L} \sum_{i=1}^{L} n_i D(\mathbf{r}^{N}_i)$$

Monte-Carlo Method

Random Sampling

- Evaluating $I = \int_{a}^{b} f[x] dx$.
- Methodical approach

- Stochastic approach from Kofka *n* points selected from uniform distribution $\pi(x)$ $\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow I \approx \frac{b-a}{n} \sum_{i=1}^{n} f(x_i)$ Error • Methodical $\delta I \sim n^{-2/d}$
 - Monte Carlo $\delta I \sim n^{-1/2}$

Importance Sampling

Most ran- $\frac{1}{f(x)}$	$ I - \int^b f[r] dr$
dom points 0.8	• $I = \int a^{\int [x] dx}$.
fall in region	• $I = (b-a)\langle f[x] \rangle$.
where $f(x)$ is ^{0.6}	et f[x]
almost zero. 0.4	• $I = \int_a^b \frac{f[x]}{w[x]} w(x) dx$, e.g.
0.2 Random Points -20 -15 -10 -5 5 10 15 20	• $I = \int_0^1 \frac{f[x(u)]}{w[x(u)]} du.$
	• $I \approx \frac{1}{L} \sum_{i=1}^{L} \frac{f[x(u_i)]}{w[x(u_i)]}$.
If <i>f</i> / <i>w</i> is constant, variance vanishes	• $\sigma_I^2 = \frac{1}{L} [\langle (f/w)^2 \rangle - \langle f/w \rangle^2].$
E.B. Rudnyi, J.G. Korvink, Chair for Microsystem Simulation	ALBERT-LUDWIGS- UNIVERSITÄT FREIBURG

Monte-Carlo Method

Markov Chain

Stochastic process

- Movement through a series of well-defined states in a way that involves some element of randomness.
- For our purposes, "states" are microstates in the governing ensemble.

Markov process

Stochastic process that has no memory.

- Selection of next state depends only on current state, and not on prior states.
- Process is fully defined by a set of transition probabilities π_{ij} .
- π_{ij} is probability of selecting
 state *j* next, given that presently in state *i*.
- Transition-probability matrix Π collects all π_{ij} .
- Limiting probability does not depend on the initial distribution $P = P\Pi$.

Metropolis Method

 At limiting distribution, detailed balance or the principle of microscopic reversibility:

 $N(o)\pi(o \rightarrow n) = N(n)\pi(n \rightarrow o)$

- Use any convenient underlying transition matrix but not accept every step.
- Rather accept a step with such a probability to satisfy the detailed balance.
- Metropolis suggested $\pi(o \rightarrow n) = \alpha(o \rightarrow n) \operatorname{acc}(o \rightarrow n)$

- $\alpha(o \rightarrow n)$ is underlying probability to move (uniform distribution)
- $acc(o \rightarrow n)$ is the acceptance probability
- If N(n) < N(o) then

 $\operatorname{acc}(o \to n) = \exp\{-\beta[\operatorname{U}(n) - \operatorname{U}(o)]\}$

- If N(n) > N(o) then $acc(o \rightarrow n) = 1$
- It is possible to prove that this leads to the detailed balance.

Limits of Metropolis method

 Can not estimate the configuration integral

 $Q_{conf} = \int \exp\{-\beta U\} d\mathbf{r}^N$ (or partition function).

 Metropolis algorithm can estimate only

$$\langle D \rangle = \frac{\int \exp\{-\beta[U(\mathbf{r}^N)]\}D(\mathbf{r}^N)d\mathbf{r}^N}{\int \exp\{-\beta[U(\mathbf{r}^N)]\}d\mathbf{r}^N}$$

• Trick 1 = $\exp\{-\beta U\}\exp\{\beta U\}$

• Then we can write $\frac{V}{Q_{conf}} = \frac{\int \exp\{-\beta U\} \exp\{\beta U\} d\mathbf{r}^{N}}{\int \exp\{-\beta U\} d\mathbf{r}^{N}}$

where $D = \exp{\{\beta U\}}$

- Does not help: it is necessary to sample high energy regions.
- Special tricks are required to estimate the free energy and entropy.

- statistics nl^2
- Radius of gyration
 - $\langle S \rangle_{o}^{2} = \langle \Sigma_{i} (\mathbf{r} \mathbf{r}_{o})^{2} / N \rangle$
- Backbone chain

- simulation:
 - dilute solution of a polymer and polymer melt.
- Full atomistic model is a challenge to simulate.

Lattice Model and Random Walk

Lattices (two and three dimensional), bent and crankshaft

from 99freire

- Random walks
 - On and off lattice
 - Self-cross and self-avoiding
- Demo from Atkins

- From Micro to Macro
- Statistical Mechanics (Statistical Thermodynamics)
 - Ensemble
 - Microcanonical Ensemble
 - Canonical Ensemble
 - Other Ensembles
 - Classical vs. Quantum
 - Closed-Form Solutions
- Monte-Carlo Method
 - Basic Metropolis Algorithm
 - Random Sampling
 - Importance Sampling
 - Markov Chain

- Metropolis Method
- Limits of Metropolis method
- Polymers
 - Lattice Model and Random Walk

