Quantum Chemistry

Jan G. Korvink and Evgenii Rudnyi IMTEK Albert Ludwig University Freiburg, Germany

Learning Goals

- Where the potential function comes from: Adiabatic approximation
- Molecular orbitals and the Hartree-Fock equation
- Designing molecular orbitals -LCAO
- Electron correlation
- State of the art

References

 Leach, A.R., Molecular modelling: principles and applications.

On-line resources

 On-line book: Jack Simons, Quantum Mecha-nics in Chemistry, simons.hec.utah.edu/ TheoryPage/index.html

Tutorials

- Neal McDonald et al, An Introduction to Quantum Mechanics www.chemistry.ohio-state.edu/betha/ qm/
- C. David Sherrill, Lectures in Quantum Chemistry,

vergil.chemistry.gatech.edu/notes/ index.html

Potential Energy Surface

- Time-dependent and stationary Schrödinger equation
- Molecular Hamiltonian
- Separating electronic and nuclear wavefunctions: Born-Oppenheimer approximation
- Example: Chemical Reaction Path

Schrödinger Equation

- Time-dependent $H\Psi = i\hbar \frac{d\Psi}{dt}$
 - *H* Hamiltonian operator, $h = h/2\pi$
 - $\Psi(\mathbf{r}, t)$ wave function, $|\Psi(\mathbf{r}, t)|^2$ - probability density
- Separation for time and space variation
 - Potential energy is independent of time.
 - $\Psi(\mathbf{r}, t) = \Psi(\mathbf{r}) \theta(t)$

- Stationary equation $H\psi = E\psi$
- Number of discrete states $\{\psi_i E_i\}$
- Ab initio From the first principles - Based on a limited number of experimental results.
- All interatomic forces can be explained from the Coulomb law.
- We do not have potential surface yet.
 - Energy does not depent on atom positions.

Potential Energy Surface

Molecule Hamiltonian

Nuclei (\mathbf{R}) and electrons (r) : $\Psi(\mathbf{R}, \mathbf{r})$

UNIVERSIT T FREIBURG

E.B. Rudnyi, J.G. Korvink, Chair for Microsystem Simulation

Born-Oppenheimer Approximation

- Proton is 1836 times heavier than electron.
- Factorize for nuclei part $\Psi(\mathbf{R}, \mathbf{r}) = \Psi(\mathbf{R}) \Psi(\mathbf{r}; \mathbf{R}).$
- Schrödinger equation for electrons

 $H_{el}\psi(\boldsymbol{r};\boldsymbol{R}) = E_{el}(\boldsymbol{R})\psi(\boldsymbol{r};\boldsymbol{R}).$

- This is parametric equation over nuclei coordinates.
- Quantum chemistry solves the electronic equation.

- *E_{el}(R)* is the nuclei potential energy.
- Schrödinger equation for nuclei $H_{nuc}(E_{el})\Psi(\mathbf{R}) = E_{nuc}\Psi(\mathbf{R}).$
- Non-adiabatic coupling is neglected (typically this is a small term).
- Usually people solve the electonic equation only.
 - Nuclei movements is treated by the clasical mechanics.

Potential Energy Surface

Example - Chemical Reaction Path

Demonstration from scsg9.unige.ch/fln/eng/toc.html

UNIVERSIT T FREIBURG

Molecular Orbitals and HF SCF

- Atomic units
- Variation Principle
- Molecular orbitals
- Hartree-Fock Self Consistent Field (HF SCF)
- Language For Chemists

Simulated STM images for an arsenic vacancy on the (110) surface of GaAs. www-users.cs.umn.edu/~saad/projects/DMR/ page4_rt.htm

E.B. Rudnyi, J.G. Korvink, Chair for Microsystem Simulation

HF SCF

Atomic Units

- 1 unit of charge is the electron charge | e | =1.60219x10⁻¹⁹ C.
- 1 unit of mass is the electron mass $m_e = 9.10593 \times 10^{-31}$ kg.
- 1 unit of length (1 Bohr) is

$$a_o = h^2 / 4\pi^2 m_e e^2 = 5.29177 \times 10^{-11} m_e$$

•
$$h = 2\pi, h = 1$$

1 unit of energy (1 Hartree) is

$$E_a = e^2 / 4\pi\epsilon_o a_o = 4.35981 \times 10^{-18} J$$

1 Hartree = 2.63 MJ/mol = 27.3 eV

- Zero energy is nuclei and electrons separated at infinity.
- Dissociation energy is a small difference of huge numbers.
 - Example (GAMESS + simple HF):
 - $Cl2: E_{el} = -918.9371$
 - Cl: $E_{el} = -459.4734$
 - 2Cl: $\tilde{E}_{el} = -918.9468$
 - $Cl2 = 2Cl \Delta E = 0.0097 = 25$ kJ/mol.
 - Experimental: 240 kJ/mol.

HF SCF

Variation Principle

Electronic Hamiltonian

•
$$-\frac{1}{2}\sum_{i}^{n}\nabla_{i}^{2} - \sum_{i}^{n}\sum_{I}^{N}\frac{Z_{I}}{r_{Ii}} + \frac{1}{2}\sum_{i,j}^{n}\frac{1}{r_{ij}}$$

without nucleus-nucleus repulsion

Variational theorem

- Choose a trial wavefunction, Ψ_{trial} with unknown parameters
- Minimize Reyleigh ratio

$$\varepsilon = \frac{\int \Psi_{trial}^{*} H \Psi_{trial} dx}{\int \Psi_{trial}^{*} \Psi_{trial} dx} \text{ over}$$

unknowns

For any
$$\Psi_{trial} \epsilon \ge E_o$$

Molecular Orbitals

 $\Psi(1, 2, ..., N) = \chi_1(1)\chi_2(2)...\chi_N(N)$

 Does not work - breaks indistinguishability criterion

Slater determinant

•
$$\Psi = \frac{1}{\sqrt{N}} \begin{bmatrix} \chi_1(1) \ \chi_2(1) \ \dots \ \chi_N(1) \\ \chi_1(2) \ \chi_2(2) \ \dots \ \chi_N(2) \\ \dots \ \dots \ \chi_1(N) \ \chi_1(N) \ \dots \ \chi_N(N) \end{bmatrix}$$

• Satisfies antisymmetry

Electron has spin: +1/2 or -1/2

- Closed shells: Restricted Hartree-Fock (RHF) - Each space MOs holds two electrons.
- Open shells (odd number of electrons)
 - Restricted Open Shell HF (ROHF) - Just few space MOs holds one electron.
 - Unrestricted HF (UHF) Each space MO holds one electron.

principle

Hartree-Fock Self Consistent Field

 Substitute the Slater determinant into Reyleigh ratio. The minimum is given by

Hartree-Fock

Equations

- $f_i \chi_i = \varepsilon_i \chi_i$
 - *f_i* Fock operator (depends on all the molecular orbitals)
 - ε_i Molecular orbital energy

- A system of coupled nonlinear integral-differential equations
- Iterative solution: start with some χ_i, compute f_i, solve for new χ_i, and so on.
- Introduces a lanquige for chemists.
 - But this is just an approximation.

Language For Chemists

HOMO - Highest Occupied

HOMO and LUMO of formamide from Leach's book

ALBERT-LUDWIGS-UNIVERSIT T FREIBURG

Molecular Orbital

LUMO - Lowest Unoccupied **Molecular** Orbital

- Linear Combination of Atomic Orbitals (LCAO)
- Visualizing 3d atomic orbital
- Roothan-Hall Equations
- Basis set

MTEK

Semi-empirical methods

Electronic charge density of silicon in the diamond structure. www-users.cs.umn.edu/~saad/projects/DMR/ page4_rt.htm

Molecular Orbitals

Closed shells

- For each pair of two spin orbitals $\chi_i = \varphi_j \alpha$ and
 - $\chi_{i+1} = \varphi_j \beta.$
- For open shells there are more problems, see textbooks.

Linear Combination of Atomic Orbitals

•
$$\phi_j = \sum_{m}^{K} c_{mj} \phi_m$$
 unknowns are

c_{mj}.

Atomic orbitals

- Solving Schrödinger equation for the atom (1s, 2s, 2p, 3s, 3p, 3d, ...).
- K atomic basis functions produces 2K spin orbitals.
- N electrons, then there are 2K-N unoccupied orbitals.
- Typically for large molecular systems K >> N.

Visualizing 3d Orbital • Isosurfaces and slices

(http://www-wilson.ucsd.edu/ education/)

Roothan-Hall Equations

- Substitute LCAO for molecular orbitals in the Hartree-Fock equations - for the closed shell the solution is given by a matrix equation
- $\bullet \ FC = SCE$
 - F Fock matrix: obtained from the different integrals over basis functions, number of integrals (K⁴+2K³+3K²+2K)/8

- S overlap matrix: to make molecular orbitals orthogonal
- C matrix with unknowns in LCAO
- E diagonal matrix with molecular orbital energies
- F and S depends on C. The solution is again iterative: start with some C, compute F and S, then compute new C and E, and so on.
- Fortunately non-linearity is rather weak.

Basis Set

- Slater Type Orbital (STO)
 - Radial part

$$\psi(r) = Ar^{n-1}e^{-ar}$$
 (already some approximation)

- Still, computing integrals takes too much time
- Gaussian Type Orbitals (GTO)

•
$$\psi(r) = Ax^{j}y^{j}z^{k}e^{-ar^{2}}$$
 (very fast to compute integrals)

• Equilibrium bond length of H₂

STO-3G	4-31G	6-31G*	6-31G**	Expr.
1.346	1.380	1.380	1.385	1.401
	-			1

(atomic units)

Comparison of Basis Sets

UNIVERSIT T FREIBURG

Semi-Empirical Methods

Simplifying computing

- Leave Roothan-Hall equations
- Take into account valence electrons only, ignore core electrons
- Neglect some integrals
- Parametrize the other integrals from experimental values

Neglect of differential overlap

- CNDO complete neglect, INDO - intermediate neglect, MINDO - modified intermediate neglect, MNDO - modified neglect
- AM1 Austin model 1
- PM3 Parametrization 3

The zero energy is different.

Advanced Quantum Chemistry

- Electron correlation
- Configuration Interaction
- Density Functional Theorem
- Summary
- Relativistic corrections

Quantum Dot calculation (more than 1000 atoms) http://www-users.cs.umn.edu/~saad/ projects/DMR/page2_rt.htm

 Hartree-Fock is a mean field theory

 Overestimate ionic states at long distances and the probability to • As a result, for two electrons $P(r_1, r_2) = P(r_1)P(r_2)$

Peter Knowles

http://www.fz-juelich.de/nic-series/Volume3/Volume3.html

find two electrons close together

Configuration Interaction (CI)

- K basis functions produces 2K spin orbitals.
- N electrons, then there are 2K-N unoccupied orbitals.
- CI:

$$\Psi = c_0 \Psi_0 + c_1 \Psi_1 + c_2 \Psi_2 + \dots$$

- Number of configurations is (2K!)/[N!(2K-N)!].
- CIS, CID, CISD, however they are not size consistent.

Moller and Plesset perturbation theory

- $H = H_o + \lambda V$
- MP2, MP3, MP4, for example, MP2/6-31G*

Advanced Quantum Chemistry

Density Functional Theory

- Hohenberg & Kohn, 1964.
- Ground-state energy is uniquely defined by the electron density

$$E|\rho(r)| = \int V_{ext}(r)\rho(r)dr + F|\rho(r)|.$$

- ρ is the electron density.
- V is the external potential (Coulomb interaction with nuclei).

- F is some functional (unfortunately not known).
- Kohn & Sham (1965) suggested some empiric approximation for F.
- LDA local density approximation.
- BLYP Becke-Lee-Yang-Par gradient-corrected functional.
- Roughly speaking: to take into account the electron correlation for for a single HF computation.

E.B. Rudnyi, J.G. Korvink, Chair for Microsystem Simulation

ALBERT-LUDWIGS-UNIVERSIT T FREIBURG

Advanced QC: Relativistic effects

 In principle, it is necessary to solve not Schrödinger but rather Dirac equation - a set of four coupled differential equations

ALBERT-LUDWIGS-

UNIVERSIT T FREIBURG

E.B. Rudnyi, J.G. Korvink, Chair for Microsystem Simulation

- A Ethylene, 16 electrons, Basis
 Set = 6-311++G** (74 functions)
- B Ethylene, 16 electrons, 6-311++G(3df,3pd) (150

functions)

C -18-crown-6, C12H24O6, 144
 electrons - 606 functions

	А	В	С
RHF	8	45	90197
RHF-gradient	14	133	
RHF-gessian	56	789	
MP2	11	481	
MP4	83		
CISD	46		

Commercial

- GAUSSIAN: www.gaussian.com/
- CACHE: www.cachesoftware.com
- Materials Studio: www.accelrys.com

Free

 General Atomic and Molecular Electronic Structure System (GAMESS) www.msg.ameslab.gov/ GAMESS/

Lists

www.ch.ic.ac.uk/local/ organic/mod/software.html

- Where the potential function comes from: Adiabatic approximation
- Atomic and molecular orbitals
- Multi-electron systems: Hartree-Fock equation
- Electron correlation: Configuration Interaction
- Current state of the art

