6. Model Reduction via Projection

Model Reduction of Linear Time Invariant Systems
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Model Reduction via Truncation
Projection = Transformation + Truncation
Low Dimension Subspace

How to Choose Projection
Control Theory Methods
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*Choose important states
*Reorganize the matrices N — + (- U

*Discard unimportant states — — 1K1

*Make sense only after appropriate
transformation: Model Reduction =

Transformation + Truncation

e Overbar means transformed matrices
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eIt would be good not to
> : x=[U U]
compute the transformation
explicitly.
Z
eLet us combine this in a | !

single step.
*The meaning of U; lis pure

operational.

A, A Ul
C DR AI, U] —
Ay Ay U,
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eSince this slide z means low Zi

x=[U; U,]

dimensional subspace only. 2,
*Low dimensional subspace
should approximate x as a

PP x=Uiz1+Uyz, =Vz+e¢
function of time or

frequency.

*Left subspace may be min [ {x(£)f Vz(r)}dt
different from the right one.
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c:o* Orthogonal Projection
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e Orthonormal basis Orthogonal Projection ,
simplifies things. |

. EE—
Ul T Arnoldi
Uil =Ui

e Congruent transform
preserves definiteness.

A =V AV _
Simpler
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e:o* Oblique Projection
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Bi-orthogonal Oblique Projection 4
basis: (Y
Lanczos ~—a
wly =1
ore natural:
Controllability
Observability
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Projecting Other Representations
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e Natural extension to non-

canonical forms.

e An alternative is the
transformation to the
canonical form and then

projection.

*May produce different
reduced models.

Ex=Ax+ Bu
y=Cx

X

Vz

VIEV: =V AVz+ V! By

y=CVz

i=E '"Ax+ E"'Bu
y=Cx

:=VIE AV + VT E~'By

y=CVz
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Coarsening in Physical Space

http://www.win.tue.nl/macsi-net/ WG/WG2.html
e Adaptive meshing
*Preserves geometrical relationship
*Based on functions with local basis support

* Opportunity for model reduction is limited
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Coarsening in Functional Space

x=Vz

e Low-rank
approximation.

e Columns of V
are global
functions.

eValues of z are
dimensionless
amplitudes.

A= UOVT = Gll/llV{ + (721/!2\/'

Clewn: aniginal pictura

pictures from Antoulas

Clowmi: rank 12 approximation

Ty vou

Clowm: rank & approximaton

Clown: rank 20 approximation
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Overview of Methods

Table 3: Methods of model reduction of linear dynamics systems

MName

Advantages

Disadvantages

Control theory ( Truncated
Balanced Approximation,
Singular Perturbation
Approximation, Hankel-Norm
Approximation)

Have a global error estimate. can
be used in a fully automatic
manner.

Computational complexity is

3 .
(N ). can be used for systems
with order less than a few
thousand unknowns.

ad¢ approximants (moment
matching) via Krvlov subspaces
by means of either the Arnoldi or
Lancsoz process.

Very advantageous
computationallv, can be applied
to very high-dimensional st
order linear systems.

Does not have a global error
estimate. It is necessary to select
the order of the reduced system
manually.

SVD-Krylov (low-rank
Grammian approximants).

Have a global error estimate and
the computational complexity is

less than U[Nz} .

Just under development.
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Hankel Singular Values
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Hankel Singular

Values (HSV)

o

C

¢ Impulse response:
hity=C-e™. B

¢ System: X =

¢ Input-to-state: &(t) = ¢

¢ State-to-output: n(t) = C- o

\ 4

At

- B

¢ Grammians:

s T

P = ﬂ(e"’“-B-BT-e“l Yt
- T

Q = D(e““-c""-c-eﬂ*)df

¢+ Lyapunov equations:
A-P+P-A"+B-B' =0

AT Q+0Q-A+C"

-C =0

¢ HSV: 0, = ,/A(P-Q)
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¢ Error bound: If
the system is
reduced to one
with k largest
HSV then

Antoulos

|G -¢&l.<
2(0, ., +...+0,)
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e:o* Control Theory Methods
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Transfer Function ¢ Faster than HNA.,

: ¢ Do not preserve the
¢ In Laplace Domain: P

- stationary state.
Gy(s) = C-(sI-A) -B ¢ Singular Perturbation Appr.

. ¢ Preserve the stationary state.
Ditferent methods ¢ Frequency-weighted model

reduction

o IVG-Gw.

¢ Stable systems
¢ Inunstable systems
something should be done
with unstable poles.
+ Hankel Norm Appr.
¢ Produces an optimal solution
¢ Balanced Truncation Appr.
¢+ Most often used.
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SLICOT and Scalability

SLICOT Library

¢ FORTRAN Code + Examples
found at:
www.win.tue.nl/niconet
¢ Buropean Community
BRITE-EURAM III Thematic
Networks Programme.
¢ Implements all methods:
¢ Balanced Truncation Appr.
¢ Singular Perturbation Appr.
¢ Hankel Norm Appr.
¢ Frequency-weighted MOR.
¢+ Has a parallel version.

¢+ Matlab has licensed SLICOT,

4

¢ Yet, the Lumputatmnal
complexity is O(N ).
¢ Limited to “small” systems:

Onder | Time Serial | (0 (0 S
600 60 25

1332 703 130

2450 4346 666

3906 2668
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