6. Model Reduction via Projection

Model Reduction of Linear Time Invariant Systems

Evgenii Rudnyi, IMTEK

Model Reduction via Truncation

Projection = Transformation + Truncation

Low Dimension Subspace

How to Choose Projection

Control Theory Methods

- Choose important states
- Reorganize the matrices
- Discard unimportant states

- Make sense only after appropriate transformation: Model Reduction = **Transformation + Truncation**
- Overbar means transformed matrices

$$\begin{vmatrix} \dot{z}_1 \\ \dot{z}_2 \end{vmatrix} = \begin{vmatrix} \overline{A}_{11} & \overline{A}_{12} \\ \overline{A}_{21} & \overline{A}_{22} \end{vmatrix} \begin{vmatrix} z_1 \\ z_2 \end{vmatrix} + \begin{vmatrix} \overline{B}_1 \\ \overline{B}_2 \end{vmatrix} u$$

$$y = \begin{bmatrix} \overline{C}_1 & \overline{C}_2 \end{bmatrix} \begin{vmatrix} z_1 \\ z_2 \end{vmatrix}$$

$$\dot{z}_1 = \overline{A}_{11}z_1 + \overline{B}_1 u$$
$$y = \overline{C}_1 z_1$$

$$x = Uz$$

Transformation + Truncation = Projection

- It would be good not to compute the transformation explicitly.
- •Let us combine this in a single step.
- The meaning of U_1^{-1} is pure operational.

$$\begin{bmatrix} \overline{A}_{11} & \overline{A}_{12} \\ \overline{A}_{21} & \overline{A}_{22} \end{bmatrix} = \begin{bmatrix} U_1^{-1} \\ U_2^{-1} \end{bmatrix} A [U_1 \quad U_2] \longrightarrow A_{11} = U_1^{-1} A U_1$$

$$\overline{B}_1 = U_1^{-1} B$$

$$x = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{vmatrix} z_1 \\ z_2 \end{vmatrix}$$

$$\begin{bmatrix} z_1 \\ z_2 \end{bmatrix} = U^{-1}x = \begin{bmatrix} U_1^{-1} \\ U_2^{-1} \end{bmatrix} x$$

$$\overline{A} = U^{-1}AU$$

$$\overline{A}_{11} = U_1^{-1} A U_1$$

$$\overline{B}_1 = U_1^{-1} B$$

$$\overline{C}_1 = C U_1$$

Low Dimension Subspace

- •Since this slide *z* means low dimensional subspace only.
- •Low dimensional subspace should approximate *x* as a function of time or frequency.
- •Left subspace may be different from the right one.

$$x = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{vmatrix} z_1 \\ z_2 \end{vmatrix}$$

$$x = U_1 z_1 + U_2 z_2 = Vz + \varepsilon$$

$$\min \int \{x(t) \int Vz(t)\} dt$$

•Orthonormal basis simplifies things.

$$U^{-1} = U^T$$

$$U_1^{-1} = U_1^T$$

$$V^{-1} = V^T$$

• Congruent transform preserves definiteness.

$$A_r = V^T A V$$

Simpler

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Bi-orthogonal basis:

$$W^TV = I$$

Projecting Other Representations

- Natural extension to noncanonical forms.
- •An alternative is the transformation to the canonical form and then projection.
- May produce different reduced models.

 $E\dot{x} = Ax + Bu$ y = Cx x = Vz

$$V^{T}EV\dot{z} = V^{T}AVz + V^{T}Bu$$
$$y = CVz$$

$$\dot{x} = E^{-1}Ax + E^{-1}Bu$$
$$y = Cx$$

$$\dot{z} = V^T E^{-1} A V z + V^T E^{-1} B u$$
$$y = C V z$$

Evgenii Rudnyi

Coarsening in Physical Space

http://www.win.tue.nl/macsi-net/WG/WG2.html

- Adaptive meshing
- Preserves geometrical relationship
- Based on functions with local basis support
- Opportunity for model reduction is limited

Coarsening in Functional Space

$$x = Vz$$

- $A = U\sigma V^{T} = \sigma_{1}u_{1}v_{1}^{T} + \sigma_{2}u_{2}v_{2}^{T} + \dots + \sigma_{n}u_{n}v_{n}^{T}$
- •Low-rank approximation.
- Columns of V are global functions.
- Values of z are dimensionless amplitudes.

pictures from Antoulas

Clown: rank 12 approximation

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Table 3: Methods of model reduction of linear dynamics systems

Name	Advantages	Disadvantages
Control theory (Truncated Balanced Approximation, Singular Perturbation Approximation, Hankel-Norm Approximation)	Have a global error estimate, can be used in a fully automatic manner.	Computational complexity is $O(N^3)$, can be used for systems with order less than a few thousand unknowns.
Padé approximants (moment matching) via Krylov subspaces by means of either the Arnoldi or Lancsoz process.	Very advantageous computationally, can be applied to very high-dimensional 1st order linear systems.	Does not have a global error estimate. It is necessary to select the order of the reduced system manually.
SVD-Krylov (low-rank Grammian approximants).	Have a global error estimate and the computational complexity is less than $O(N^2)$.	Just under development.

Hankel Singular Values

Hankel Singular Values (HSV)

- System: $\Sigma = \left[\frac{A \mid B}{C} \right]$
- Impulse response:

$$h(t) = C \cdot e^{At} \cdot B$$

- Input-to-state: $\xi(t) = e^{At} \cdot B$
- State-to-output: $\eta(t) = C \cdot e^{At}$

Grammians:

$$P = \int_0^\infty (e^{At} \cdot B \cdot B^T \cdot e^{A^T t}) dt$$

$$Q = \int_0^\infty (e^{A^T t} \cdot C^T \cdot C \cdot e^{At}) dt$$

Lyapunov equations:

$$A \cdot P + P \cdot A^{T} + B \cdot B^{T} = 0$$
$$A^{T} \cdot Q + Q \cdot A + C^{T} \cdot C = 0$$

• HSV:
$$\sigma_i = \sqrt{\lambda_i(P \cdot Q)}$$

Theory

 Error bound: If the system is reduced to one with k largest HSV then

$$||G - \hat{G}||_{\infty} < 2(\sigma_{k+1} + \dots + \sigma_n)$$

Control Theory Methods

Transfer Function

In Laplace Domain:

$$G_{\Sigma}(s) = C \cdot (sI - A)^{-1} \cdot B$$

Different methods

- Stable systems
 - In unstable systems something should be done with unstable poles.
- Hankel Norm Appr.
 - Produces an optimal solution
- Balanced Truncation Appr.
 - Most often used.

- Faster than HNA.
- Do not preserve the stationary state.
- Singular Perturbation Appr.
 - Preserve the stationary state.
- Frequency-weighted model reduction
 - $V(G \hat{G})W|_{\infty}$

SLICOT and Scalability

SLICOT Library

 FORTRAN Code + Examples found at:

www.win.tue.nl/niconet

- European Community BRITE-EURAM III Thematic Networks Programme.
- Implements all methods:
 - Balanced Truncation Appr.
 - Singular Perturbation Appr.
 - Hankel Norm Appr.
 - Frequency-weighted MOR.
- Has a parallel version.
- Matlab has licensed SLICOT.

- Yet, the computational complexity is O(N³).
 - Limited to "small" systems:

Order	Time Serial	Time Parallel (4 processor)
600	60	25
1332	703	130
2450	4346	666
3906		2668