Automatic Model Reduction for Transient Simulation of MEMSbased Devices

Evgenii B. Rudnyi and Jan G. Korvink IMTEK–Institute for Microsystem Technology Albert Ludwig University Freiburg

Review

 E. B. Rudnyi, J. G. Korvink, *Automatic Model Reduction for Transient Simulation of MEMS based Devices*, Sensors Update, 2002, 11, 3-33.

Tutorial

 J. G. Korvink, IEEE Sensors Short Course on Compact Modelling, 2002.

Preprints

www.imtek.de/simulation/

Contact

rudnyi@imtek.de

Introduction

Contents

- Introduction to the idea
- Statement of the problem
- Small linear systems
- Introduction to Krylov subspaces
- Large linear systems
- Nonlinear systems

Forging a smaller System

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Introduction

Generation Paths

UNIVERSITÄT FREIBURG

Why is it useful ?

- Compact model for system level simulation:
 - Reduced model fits naturally in system level simulators.
 - The generatation of the reduced model can be almost automatic.

Block diagram:

Small Pause

Summary

- Many computational nodes in a typical FEM (...) model appear to be "redundant".
- It appears that much of the behaviour of a system takes place in a low dimensional subspace.
- MOR can greatly improve the use of simulation tools during engineering design.

What's Next?

- Introduction to the idea
- Statement of the problem
- Small linear systems
- Introduction to Krylov subspaces
- Large linear systems
- Nonlinear systems

Delivered ODEs

- Discussion Limited to 1st Order
 Implicit Form (MNA, T-psi):
 - $E \cdot \frac{dx}{dt} = F \cdot x + f$ $E, F \in \Re^{n} \times \Re^{n} \qquad f, z$

$$f, x(t) \in \mathfrak{R}^n$$

Second Order (mechanics):

$$M \cdot \frac{d^2 y}{dt^2} + D \cdot \frac{d y}{dt} + K \cdot y = f$$

$$z = \frac{dy}{dt}$$
 : $\begin{bmatrix} M & 0 \\ 0 & I \end{bmatrix} \cdot \frac{d}{dt} \begin{bmatrix} z \\ y \end{bmatrix} = - \begin{bmatrix} D & K \\ -I & 0 \end{bmatrix} \cdot \begin{bmatrix} z \\ y \end{bmatrix} + \begin{bmatrix} f \\ 0 \end{bmatrix}$

• Explicit Form:

$$\frac{d\boldsymbol{x}}{dt} = A \cdot \boldsymbol{x} + \boldsymbol{b}$$

- $A = E^{-1} \cdot F \qquad A \in \mathfrak{R}^{n} \times \mathfrak{R}^{n}$ $b = E^{-1} \cdot f \qquad b \in \mathfrak{R}^{n}$
- **Goal:** Find X such that $x = X \cdot z + \varepsilon$ where $z \in \Re^k$ for $k \ll n$ and $\varepsilon \in \Re^n$ is "small": $min \|\varepsilon(t)\| = min \|x(t) - X \cdot z(t)\|$

System Theory Version

- Often solution is not needed over entire domain, i.e., with:
 - Inputs $u \in \Re^m$
 - Outputs $y \in \Re^p$
 - Scatter Matrix $B \in \Re^n \times \Re^m$
 - Gather Matrix $C \in \Re^p \times \Re^n$
 - Multiple input–multiple output MIMO
 - Single input–single output SISO

Large-scale dynamic system

$$\frac{dx}{dt} = A \cdot x + B \cdot u$$
$$y = C \cdot x$$

Reduced system

$$\frac{dz}{dt} = \hat{A} \cdot z + \hat{B} \cdot u$$
$$\hat{y} = \hat{C} \cdot z$$

• Difference $min \| \boldsymbol{y}(t) - \hat{\boldsymbol{y}}(t) \|$

Statement of the Problem

Pictorial Representation

Summary

- System theory provides a natural language to describe a problem of model order reduction.
- Most results comes from mathematicians working for the system theory.

What's Next?

- Introduction to the idea
- Statement of the problem
- Small linear systems
- Introduction to Krylov subspaces
- Large linear systems
- Nonlinear systems

Hankel Singular Values (HSV)

- System: $\Sigma = \left| \frac{A \mid B}{C} \right|$
- Impulse response: $h(t) = C \cdot e^{At} \cdot B$
- Input-to-state: $\xi(t) = e^{At} \cdot B$
- State-to-output: $\eta(t) = C \cdot e^{At}$

• Grammians:

$$P = \int_0^\infty (e^{At} \cdot B \cdot B^T \cdot e^{A^T t}) dt$$

- $Q = \int_0^\infty (e^{A^T t} \cdot C^T \cdot C \cdot e^{At}) dt$
- Lyapunov equations: $A \cdot P + P \cdot A^{T} + B \cdot B^{T} = 0$ $A^{T} \cdot Q + Q \cdot A + C^{T} \cdot C = 0$

• HSV:
$$\sigma_i = \sqrt{\lambda_i (P \cdot Q)}$$

Small Linear Systems

Antoulos

Decay of Hankel Singular Values Theory Normalized singular values of Cross Grammian X

-2

• Error bound: If the system is reduced to one with **k** largest HSV then

Small Linear Systems

Transfer Function

• In Laplace Domain:

 $G_{\Sigma}(s) = C \cdot (sI - A)^{-1} \cdot B$

Different methods

- Stable systems
 - In unstable systems something should be done with unstable poles.
- Hankel Norm Appr.
 - Produces an optimal solution
- Balanced Truncation Appr.
 - Most often used.

- Faster than HNA.
- Do not preserve the stationary state.
- Singular Perturbation Appr.
 - Preserve the stationary state.
- Frequency-weighted model reduction
 - $\bullet \|V(G-\hat{G})W\|_{\infty}$

Small Linear Systems

SLICOT Library

 FORTRAN Code + Examples found at:

www.win.tue.nl/niconet

- European Community BRITE-EURAM III Thematic Networks Programme.
- Implements all methods:
 - Balanced Truncation Appr.
 - Singular Perturbation Appr.
 - Hankel Norm Appr.
 - Frequency-weighted MOR.
- Has a parallel version.
- Matlab has licensed SLICOT.

- Yet, the computational complexity is $O(N^3)$.
 - Limited to "small" systems:

Order	Time Serial	Time Parallel (4 processor)
600	60	25
1332	703	130
2450	4346	666
3906		2668

Summary

- Hankel singular value theorem gives error bound.
- System theory has mature theory for MOR of linear systems. We can find optimal low dimensional subspace.
- SLICOT library implements theory and is "easy to use" for small linear systems.

What's Next?

- Introduction to the idea
- Statement of the problem
- Small linear systems
- Introduction to Krylov subspaces
- Large linear systems
- Nonlinear systems

Introduction to Krylov Subspaces

Definition

- Action of matrix A on vector r: $\{r, A \cdot r, ..., A^{k-1} \cdot r\}$
- This is the right Krylov
 subspace K_R(A, r) of A and b
 of order k.
- Action of transposed matrix A on vector 1 :

$$\{\boldsymbol{l}, \boldsymbol{A}^T \cdot \boldsymbol{l}, ..., \boldsymbol{A}^{T^{k-1}} \cdot \boldsymbol{l}\}$$

- This is the left **Krylov subspace** $K_L(A, l)$ of A and l of order k.
- Defines the low-dimensional basis of subspaces of order k.
- Direct computation is numerically unstable because of rounding errors.
- Included in 10 top algorithms of the 20th century.

Arnoldi Process

- Modified Gram-Schmidt.
- Produces basis V and small matrix H_A
- V is orthonormal: $V^T \cdot V = I$
- $\bullet \quad V^T \cdot A \cdot V = H_A$
- H_A is upper-Hessenberg matrix
- A new vector must be orthogonalized to all the previous vectors.

Lanczos Algorithm

- Lanczos vectors:
 V = span{r, A ⋅ r, ..., A^{k-1} ⋅ r}
 W = span{l, A^T ⋅ l, ..., A^{T(k-1)} ⋅ l}
 V and W are bi-orthogonal:
 V^T ⋅ W = diag(δ₁, δ₂, ..., δ_k)
- Relation to A: $V^T \cdot A \cdot W = H_I$
- *H_L* is tri-diagonal matrix.
 Efficiency: Fast for large *k*.

Small Pause

Summary

- Two algorithms can form numerically stable basis:
 - Both are amenable to large, sparse systems due to matrix-vector product.
- The Lanczos algorithm is faster.
 - Basises are biorthogonal.
- The Arnoldi algorithm is more numerically stable.
 - Basis is orthogonal.

What's Next?

- Introduction to the idea
- Statement of the problem
- Small linear systems
- Introduction to Krylov subspaces
- Large linear systems
- Nonlinear systems

Padé Approximants

 Can always express transfer function matrix elements using:

$$G_{ij}(s) = \frac{a(s-z_1)...(s-z_{n-1})}{(s-p_1)...(s-p_n)}$$

- z_i , p_i are the zeroes, poles.
- Padé matches k moments about k < n

$$s_0: \quad G_{ij}(s) = \sum_{p=0} m_i (s-s_0)^p$$

Moment matching

$$m_i = \hat{m}_i$$
 for $i = 0, ..., q$

• Reduced func. is small **rational**. $a(s-z_1) \quad (s-z_{1-1})$

$$G_{ij}(s) = \frac{u(s-z_1)\dots(s-z_{k-1})}{(s-p_1)\dots(s-p_k)}$$

- Terminology:
 - Padé approximant: match q = 2k moments.
 - Padé-type approximant: implicitly match less moments.
- Explicit matching is numerically unstable:
 - AWE asymptotic wavefrom evaluation does not work.

E.B. Rudnyi – AISEM tutorial, Trento 2003

Implicit Moment Matching

• Arnoldi: Right subspace $K_k^r(M, N), M = (A - s_0 I)^{-1}$ and $N = M \cdot B$

produces H_A and X such that:

$$\bullet \hat{A} = H_A^{-1} \cdot (I + s_0 H_A)$$

- $\bullet \ \hat{B} = H_A^{-1} \cdot X^T \cdot M$
- $\bullet \ \hat{C} = C \cdot X$

- Lanczos: Also left subspace $K_k^l(M^T, L), L = M^T \cdot C^T$ produces H_L, X and Y such that:
 - $\bullet \quad \hat{A} = H_L^{-1} \cdot (I + s_0 H_L)$

$$\bullet \ \hat{B} = H_L^{-1} \cdot Y^T \cdot M$$

$$\bullet \ \hat{C} = C \cdot X$$

- Arnoldi implicitly matches k moments.
- Lanczos implicitly matches 2k moments

Computing Inverses

- Typical case: $F^{-1} \cdot w$
 - Do not compute F^{-1} : Bad idea
 - Find x such that $F \cdot x = w$
- By LU Decomposition:
 - $F = L \cdot U$
 - Two fast triangle solves $L \cdot (U \cdot x) = w \Leftrightarrow L \cdot y = w$ $U \cdot x = y$

- By QR Decomposition $F = Q \cdot R$
- Orthogonality $Q^{-1} = Q^T$
- One fast triangle solve
- One fast matrix multiply
- Iterative Solvers:
 - Preconditioner from Appl.
 - Implement fast matrix multiply: Again, application can help here

Examples from EE

64 Pin RF IC: Padé via Lanczos:

Source: Z. Bai, R. Freund, A Partial Padé-via-Lanzcos Method for Reduced-Order Modelling

CD Player: Comparison

◆ PEEC EM Circuit: PVL

Source: Z. Bai, R. Freund, A Partial Padé-via-Lanzcos Method for Reduced-Order Modelling

E.B. Rudnyi – AISEM tutorial, Trento 2003

Rational Krylov

- Expansion usually accurate about s_0 .
- This suggests:
 - Multiple expansion points s_i
 - Matching transfer function moments at all points
- Challenge: Where to place s_i
 Expensive solves (Many LU or QR decompositions)

ALBERT-LUDWIGS-UNIVERSITÄT FREIBURG

Solving Lyapunov Equations

- Padé approximants do not have global error estimates ... SVD-Krylov.
- Steps:
 - Solve Lyapunov equations for Grammians *P* and *Q*.
 - Eigen-decompose PQ.
- Very expensive: $\sim O(n^3)$

- General remedy: Low rank approximation of grammians.
 - Dense matrix $\sim O(n^2)$
 - Sparse matrix $\sim O(n)$
 - Also Krylov-based, also for balancing.
- See LYAPACK (Matlab based)
 www.netlib.org/lyapack

Summary

- Padé and Krylov are **related**.
- Arnoldi and Lanczos can generate implicitly Padé approximants (PVL).
- Rational Krylov improves using many expansions.
- Future holds promise for:
 - Large Lyapunov solvers.
 - Large matrix exponential approximants.

What's Next?

- Introduction to the idea
- Statement of the problem
- Small linear systems
- Introduction to Krylov subspaces
- Large linear systems
- Nonlinear systems

E.B. Rudnyi – AISEM tutorial, Trento 2003

Nonlinear Systems

Special Cases

• Basic Problem:

 $\dot{x} = f(x, u) \qquad y = g(x)$

- Splitting linear and nonlinear parts: $f = f_L + f_{NL}$
- Reduce linear part as usual $A_{Lij} = f_{L0} + \partial f_{Li} / \partial x_j$

• Treat nonlinear by Taylor expansion: $f_{NL} = f_{NL0} + A' \cdot x$ $+ \frac{1}{2}x^{T} \cdot A'' \cdot x + ...$ $A'_{NLij} = \partial f_{NLi} / \partial x_{j}$ $A''_{NLijk} = \partial f_{NLi} / \partial x_{j} \partial x_{k}$

$$\bullet \ f(x, u) = A(x) \cdot x + C \cdot u$$

Nonlinear Systems

POD Idea

- At appropriate times, take snapshots s_i, and collect the snapshots in a matrix:
 S = {s₁, s₂, ..., s_m}, m is many!
- Perform SVD of *S*: $S = U\Sigma V^{T} = \sum_{i=1}^{m} \sigma_{i} u_{i} \otimes v_{i}$

- Form the truncated snapshots by dropping the smallest singular values: $S_k = \hat{U}\Sigma_k \hat{V}^T$
- For reduced system, form: $\dot{\hat{x}} = U^T \cdot f(\hat{U} \cdot \hat{x}, u)$ $\hat{y} = g(\hat{U} \cdot \hat{x})$
- Disadvantages:
 - Full nonlinear solve
 - How to compute $U^T A(x) U$?
 - Some intuition

Nonlinear Systems

POD Example: MEMS

Small Pause

Summary

- Application-oriented simplifications exist, but:
 - May need symbolic manipulations.
 - May need expensive evaluations.
- POD is general, and works, but:
 - Computationally **expensive**.
 - Requires user interaction.
- Nonlinear MOR is **tough**.

Conclusions

Small Linear

- Excellent state: complete knowledge.
- For accuracy goal, automatic guaranteed reduced model.

Large Linear

- Reasonably good choices.
- Arnoldi more stable.
- Lanczos matches more moments.
- When to stop reducing?
- Padé local, nonoptimal for wide range. Remedy: rational Krylov.

- Future may yield:
 - **Lyapunov** for large systems.
 - Approximation of matrix exponential for large systems.

Nonlinear

- Either special applicationdependent techniques.
- Or Linearization or Splitting.
- Else POD, but
 - How many snapshots?

Page 31