Compact Electro-Thermal Model for a Microthruster: A Case Study

Evgenii B. Rudnyi IMTEK–Institute for Microsystem Technology Albert Ludwig University Freiburg

FW5 EU MicroPyros project

 Developing a microthruster array for nanosatellites.

Main Site

www.laas.fr/Micropyros/

Our Preprints

www.imtek.de/simulation/

Contact

rudnyi@imtek.de

Acknowledgment

- Discussions with all our partners.
- Tamara Bechtold, PhD student.

Introduction

Contents

- Microthruster Array
- Simulation Strategy
- Electro-Thermal Simulation
- Numerical Results

Overview

- A thruster is the crucial part of a nanosatellite.
- Solid propellant microthruster array:
 - High-energetic solid fuel,
 - No moving parts,
 - Manufactured from three wafers.
- Disadvantage: lack of restart ability.
 - May be compensated by manufacturing an array.
 - ◆ 10x10 thrusters on a chip.

Microthruster Array

4x4 Demo

E.B. Rudnyi - AISEM tutorial, Trento 2003

Key Engineering Questions

- To choose:
 - a wafer material (silicon, ceramics, or glass) and a technology to manufacture it,
 - a technology for the lowtemperature bonding of the wafers,
 - a solid fuel composition and a technology for its filling into mm square cavities,
 - a packaging technology.

- To develop:
 - the optimal geometrical design for the microthruster array,
 - an intelligent driving circuit to operate it.

Microthruster Theory of Operation

- Electro-Thermal Process
- Ignition and Sustained Combustion
- Membrane Rupture
- Gas Dynamics

Main points

- Gas dynamics part should be simple:
 - Possibilities to optimize the nozzle are limited.

- Key question: the array integration density:
 - How close can be microthrusters to each other.
 - Heat management is very important.
 - What is the smallest width of the microthruster.
- Model order reduction:
 - Key problem in electrothermal simulation.

Software to develop

Name	Short description	Туре
EleThermo	Simulating electro-thermal ignition	ANSYS script
FilmCoef	Estimating film coefficient	Mathematica notebook
HeatTran	Simulating heat transfer during sus- tained combustion	ANSYS script
Thrust	Estimating impulse produced by the microthruster	Mathematica notebook
CoGen	Performing model order reduction	C++

Simulation Strategy

Model Reduction for System Level Simulation

ALBERT-LUDWIGS-

UNIVERSITÄT FREIBURG

Electro-Thermal Simulation

Goal

- To treat electrical and thermal model as black boxes:
- Quite an important problem: number of IEEE papers on electro-thermal simulations

Electro-Thermal Simulation

Electro-Thermal Process

 Heat generation by means of electrical current

0

$$\nabla \bullet j = 0, j = \sigma \nabla \psi, Q = \frac{j^2}{\sigma}$$

Heat transfer

$$\nabla \bullet (\kappa \nabla T) + Q - \rho C_p \frac{\partial T}{\partial t} = 0$$

- Lumped resistor
- $Q = I^2 R / V (V resistor volume)$

- Coupled Maxwell and heat transfer equations.
- Coupled Poisson and heat transfer equations.
- Lumped resistor and continuum-based heat transfer.
- Lumped heat transfer.

Homogeneous Heat Generation Rate

 Allows us to obtain after semidiscretization a system of ODE which can act as a black box.

$$\begin{cases} \frac{dT}{dt} = A \cdot T + bu \\ y = C \cdot T \end{cases}$$

•
$$u = I(t)^2 R(T)$$

 Constant materials properties except resistivity bring forward a linear dynamic system (with small cheating).

Conclusions

- Electro-thermal simulation can be can be easily linearized under homogeneous heat approximation.
- It perfectly fits the framework for model reduction.

- If the homogeneous heat generation hypothesis is not appropriate:
 - One can find a lumped representation of electric parts that contribute to the heat generation rate.
 - Assume that within each lumped element the heat generation rate is homogeneous.

2D Axisymmetrical Model

Cross-section:

Mesh with 1071 nodes (DoF).

Temperature distribution within the igniting wafer (2D axi-symmetric model) after 0.3s of heating with 80mW power; $T_{ref} =$ 273K.

Decay of the Hankel singular values

Comparison

- Control Theory:
 - Balanced Truncation Approximation,
- Moment Matching:
 - Arnoldi Algorithm,
- ANSYS dynamic condensation:
 - Guyan method.

Guyan method

 Based on Shur complement for stationary problem:

$$\begin{bmatrix} K_{ee} & K_{ei} \\ K_{ie} & K_{ii} \end{bmatrix} \begin{bmatrix} T_e \\ T_i \end{bmatrix} = \begin{bmatrix} F_e \\ F_i \end{bmatrix}$$

• Excluding internal nodes

 $[K_r] = [K_{ee}] - [K_{ei}][K_{ii}]^{-1}[K_{ie}]$

- Guyan suggested to use the same transformation for the mass matrix.
- ANSYS extended it for the damping matrix.
 - Automatic choice for the master DoF.

Comparison

 Solution of the full system (1071 order) and of the reduced systems for a single node.

 Solution of the full system and of the reduced system for Guyan method.

Comparison

 Transfer function for the full and reduced models for a single node.

 Relative error corresponding to the plots during the initial 0.15 s.

Complete Output

- Arnoldi algorithm does not take into account outputs (matrix C) during model reduction.
- It allows us to find a low dimensional subspace for the whole state vector $\mathbf{x} = X \cdot \mathbf{z} + \mathbf{\varepsilon}$.
- This means that we can reproduce the complete output.

 The error of the reduced model for all the nodes in the case of the Arnoldi method.

Conclusions

- Dimension of thermal part can be substantially reduced.
- Arnoldi algorithm is working quite well and can be recommended for the use in the case of electro-thermal simulations.
- Control theory methods are even better but they are not scaled to large systems.

Questions to research

- Stop criterion how to choose the dimension of the reduced system.
- How to connect reduced thermal models to one another?
- Influence of nonlinear term in the input function.
- Nonhomogeneous heat generation.

Address: 🔘 http://www.imtek.uni-freiburg.de/simulation/pyros/

	Determining Thrust	Under Ideal Rocket
	Theory	
	Load Parameters	
Home	Input Parameters	
Coffmore	Cp/Cv ratio, dimensionless :	1.3
EleThermo	R, specific gas constant in J/(kg K) :	435.
FilmCoef	Flame temperature in K :	2000
HeatTran	External pressure in Pa :	100000.
Thrust	Area at throat in m^2 :	9.16*^-9
POWERED BY	Area at outlet in m ² :	1.832*^-8
webMATHEMATICA	The length of the solid fuel chamber in m :	0.002
Best Viewed With	Density of the fuel in kg/m^3 :	1500.
Any Browser	Initial ratio of empty space in the chamber	

