Overview of Simulation Strategies for Nanoelectronics

E. B. Rudnyi, CADFEM GmbH J. G. Korvink, IMTEK, University of Freiburg

Outline

- \Rightarrow Introduction to Nanoelectronics
- \Rightarrow Nanoelectronics in ITRS
- \Rightarrow Molecular Simulation
- \Rightarrow Conclusion

Introduction

Moore's Law

- \Rightarrow Exponential growth.
- ⇒ Cost per function reduction:
 - \rightarrow 25-29% per year.
- \Rightarrow Market growth:
 - \rightarrow On average 17% per year.
- $\Rightarrow \quad \text{The law holds for about 45} \\ \text{years.}$
- \Rightarrow ITRS
 - → Industry want to keep with this law further.

Gordon E. Moore, 1965

Cramming more components onto integrated circuits

Introduction

Papers on Nanoelectronics: Web of Science

- \Rightarrow 925 papers:
 - \rightarrow Refereed journals.
- \Rightarrow Search includes:
 - \rightarrow Title,
 - \rightarrow Keywords,
 - \rightarrow Abstract.

00			ISI Web of K	nowledge (v3	.0]		
🔺 🕨 🕑 🚱 htti	p://portal.isiknowledge	e.com/por	tal.cgi?DestApp	=WOS&Func=	Frame	^ Q- Google	1
l Web of Kno	wledge℠	Web of	Science		GO		HOME LOG
SUMMARY		Web	Of Scienc	e Results	Analysi	S	HELP
			Results	Analysis			
925 records. TS=(nanoelectronic*)						
Rank the records by	: Analyze:	5	Set display options: Sort by:			Sort by:	
Language Publication Year Source Title Subject Category	Up to 100000 🗘 r		how the top [inimum record			 Record count Selected field 	
se the checkboxes ote: The number o	results by the select below to view the r of records displayed ntained more recor	ecords. may be ds than t	greater than he number of	records an	alyzed.		
VIEW RECORDS Field:	Publication Year	Record Count	% of 925	Bar Chart	SAVE ANALY	SIS DATA TO FILE	
8	2005	171	18.4865 %				
8	2006	135	14.5946 %	1			

2004 129 13.9459 % 2003 120 12.9730 % 8 2002 101 10.9189 % 2001 62 6.7027 % 200 2000 50 5.4054 % 1999 36 3.8919 % 1998 28 3.0270 % 1996 25 2.7027 % VIEW RECORDS SAVE ANALYSIS DATA TO FILE (10 Publication Year value(s) outside display options.)

Introduction

Papers on Nanoelectronis: IEEE

- \Rightarrow 1681 papers.
- ⇒ Only IEEE publications.
- ⇒ IEEE conferences are included.

Introduction

CRC On-Line Book Chapters

 \Rightarrow 163 Hits

$\Theta \Theta \Theta$	🔀 CRCnetBASE - Netscape		
<u>Eile E</u> dit <u>V</u> iew <u>G</u> o <u>B</u> ookmark	s <u>T</u> ools <u>W</u> indow <u>H</u> elp		
Back - Forward - Reload S	http://www.crcnetbase.com/search/searchResult.asp#app1046	🔻 🧟 Search	Print - 🔊
📳 🥠 CRCnetBASE			×
CRUNERDADE		Advanced Search Help	<u></u>
Online Products > Contact Us Lib Corner News FAQs Home	sector of the se		
4			
			•·····

Introduction

What is Nanoelectronics?

- ⇒ Electronics on a nanometer scale (feature size less than 100 nm)
- \Rightarrow Si-based (CMOS) and beyond-CMOS
- \Rightarrow Is "electro" important?
 - \rightarrow Information processing

Carbon nanotube transistor

ITRS 2005

What technical capabilities need to be developed for the industry to stay on Moore's Law and the other trends?

atei Bearbeiten Ansicht Eavoriten resse 🙆 http://www.itrs.net/Links/2005I		Vechs
-)		
		Home Contact (
	ernational Technology Roadmap for Semiconductors	
	ITRS 2005 Edition	
About the ITRS	Executive Summary	
ITRS News	System Drivers	
TIKS News	Design	
Public Events	Test & Test Equipment	
Sponsors	Process Integration, Devices & Structures	
•	RF and A/MS Technologies for Wireless Communications	
ITRS Edition Reports and	Emerging Research Devices (includes Emerging Research Materials)	
Ordering	Front End Processes	
Models	Lithography	
inducio	Interconnect	
Papers and Presentations	Factory Integration	
Industry Links	Assembly & Packaging	
·	Environment, Safety & Health	
Website Visitor Data	Yield Enhancement	
Public Forum	Metrology	
Fablic Foram	Modeling & Simulation	
ITRS Teams	-	
Request an Account	Acronyms	

•

ITRS

Contributors

Figure 1 Composition of the ITRS Teams—1288 Global Participants

Structure

- \Rightarrow Executive Summary (89 pages)
- ⇒ 11 Focus International Technology Working Groups
 - \rightarrow ...
 - → Emerging Research Devices / Emerging Research Materials
 - \rightarrow ...
- ⇒ 4 Crosscut International Technology Working Groups
 - \rightarrow ...
 - \rightarrow Modeling and Simulation

ITRS Product Technology Trend

Scaling CMOS

		~		1					
Year of Production	2005	2006	2007	2008	2009	2010	2011	2012	2013
DRAM ½ pitch (nm) (contacted)	80	70	65	57	50	45	40	36	32
DRAM and Flash									
DRAM ½ pitch (nm)	80	70	65	57	50	45	40	35	32
Flash ½ pitch (nm) (un-contacted poly)	76	64	57	51	45	40	36	32	28
Contact in resist (nm)	94	79	70	63	56	50	44	39	35
Contact after etch (nm)	85	72	64	57	51	45	40	36	32
Overlay [A] (3 sigma) (nm)	15	13	11	10	9	8	7.1	6.4	5.7
CD control (3 sigma) (nm) [B]	8.8	7.4	6.6	5.9	5.3	4.7	4.2	3.7	3.3

Table 76a Lithography Technology Requirements-Near-term Years

Manufacturable solutions exist, and are being optimized

Manufacturable solutions are known

Interim solutions are known

Manufacturable solutions are NOT known

٠		

- \Rightarrow CMOS is the workhorse of the industry.
- ⇒ Yet, scaling of CMOS has technological and physical limits.
- ⇒ The semiconductor industry's future success continues to depend on new ideas.
- ⇒ Chapter on Emerging Research Devices including Emerging Research Materials.

Goser Gloeserkoetter Dienstuhl

ITRS

Taxonomy for Nano Information Processing

Devices and Architectures

\Rightarrow Devices:

- → Carbon nanotube and nanowires,
- \rightarrow Ferroelectric FET memory,
- \rightarrow Molecular,
- $\rightarrow \ \, \text{Nano floating gate} \\ \text{memory,}$
- \rightarrow Polymer memory,
- \rightarrow Polymer transistor,
- → Resonant tunneling devices,
- \rightarrow Spin transistor.

 \Rightarrow Architectures:

- \rightarrow Quantum Cellular Automata,
- → Cellular Nonlinear Networks,
- \rightarrow Reconfigurable Implementations,
- → Biologically Inspired Implementation.

Emerging Technologies and CMOS

Potential Solutions for Logic Devices (CNT and NW)

	Substantially exceeds CMOS
	 * or is compatible with CMOS architecture
3	** or is monolithically integrable with CMOS wafer technology
	***or is compatible with CMOS operating temperature
	(i.e., Substantially Better than Silicon Logic)
	Comparable to CMOS
	* or can be integrated with CMOS architecture with some difficulty
2	** or is functionally integrable (easily) with CMOS wafer technology
	***or requires a modest cooling technology, $T \ge 77K$
	(i.e., Comparable to Silicon Logic)
	Substantially (2×) inferior to CMOS
1	* or can not be integrated with CMOS architecture
	** or is not integrable with CMOS wafer technology
	*** <i>or</i> requires very aggressive cooling technology, T < 77K
	(i.e., Substantially Worse that Silicon Logic)

Modeling and Simulation: Technology CAD for CMOS

- ⇒ High-frequency device and circuit modeling
- \Rightarrow Front-end process modeling
- ⇒ Integrated modeling of equipment and materials
- \Rightarrow Lithography simulation
- ⇒ Thermo-mechanical-electrical modeling for interconnections and packages

Modeling and Simulation: Molecular Simulation

- ⇒ Ultimate nanoscale CMOS simulation
- \Rightarrow Nano-scale modeling of novel devices
- \Rightarrow Modeling of new materials
- Nanoscale simulation capability including accurate atomistic and quantum effects

\Rightarrow Algorithms:

- → Efficient atomistic/quantum models; ab-initio or molecular dynamics based topography simulations;
- → Multi-scale simulation (atomistic-continuum); fast coupling of equipment-topography-electrical-reliability models; hierarchichal full-chip simulation.

Model Order Reduction for EDA

\Rightarrow Current EU projects:

- → COMSON (COupled Multiscale Simulation and Optimization in Nanoelectronics) http://www.comson.org/
- → CHAMELEON RF, (Comprehensive High-Accuracy Modelling of ELectromagnetic Effects in Complete Nanoscale RF blocks) http://www.chameleonrf.org/

 → O-MOORE-NICE, (Operational MOdel Order REduction for Nanoscale IC Electronics)

Molecular Simulation

Course: Molecular Simulation for MST

- \Rightarrow J. G. Korvink, E. B. Rudnyi
 - \rightarrow http://evgenii.rudnyi.ru/teaching.html#md
- \Rightarrow Introductory course for MST engir
- \Rightarrow 12 lectures, 3 computational labs

Molecular Simulation

From the First Principles

- \Rightarrow Ab initio (from the beginning)
- ⇒ Input: A few fundamental constants
 - → electron mass, proton mass, Plank constant, speed of light, ...
- \Rightarrow Output: Everything
- \Rightarrow Computationally expensive
- ⇒ Blue Gene: IBM Petaflop computer
 - \rightarrow Protein folding

Molecular Simulation

Hierarchy

\Rightarrow Potential Energy Surface (0 K)

- → Electronic Schrödinder Equation
- → Semiempirical methods
- → Molecular Mechanics

\Rightarrow Adding Entropy and Temperature

- → Molecular Dynamics
- \rightarrow Monte Carlo

\Rightarrow QSAR (empirical correlations)

at. # of nth nucleus

Molecular Simulation

 $H\psi = E\psi$

Nuclei (\mathbf{R}) and electrons (\mathbf{r}) :

distance between

electrons i & J

Schrödinger Equation $\Psi(\boldsymbol{R},\boldsymbol{r})$ $\mathbf{H} = \mathbf{T}_{nuc} + \mathbf{T}_{elec} + \mathbf{U}_{nuc-nuc} + \mathbf{U}_{elec-elec} + \mathbf{U}$ elec-nuc del operator for nuclei del operator for electron H = ass of electron mass of nth e nucleus distance Pairs Pairs 8 nucleus n of Nuclei of Elec.

distance between

nuclei n and m

Molecular Simulation

Potential Energy Surface

- ⇒ Born-Oppenheimer Approximation
- \Rightarrow Proton is 1836 times heavier than electron.
 - \rightarrow Factorize for nuclei part

 $\Psi(\boldsymbol{R},\boldsymbol{r}) = \Psi(\boldsymbol{R})\psi(\boldsymbol{r};\boldsymbol{R})$

→ Schrödinger equation for electrons

 $H_{el}\psi(\boldsymbol{r};\boldsymbol{R})=E_{el}(\boldsymbol{R})\psi(\boldsymbol{r};\boldsymbol{R})$

Molecular Simulation

PES Example

scsg9.unige.ch/fln/eng/toc.html

Quantum Chemistry Methods

What kind of software is needed?

As the main challenge in nanoscale technology derive from quantum phenomena across nanoscale junctions, interfaces and surfaces, it is critical to be able to accurately model such phenomena from quantum theory

Junctions

Interfaces

Surfaces

Molecular Simulation

Semiempirical Methods

- \Rightarrow Consider valence electrons only
- \Rightarrow Neglect some integrals
- \Rightarrow Parameterize the others

⇒ Accuracy depends on the parameterization

Molecular Simulation

Molecular Mechanics

\Rightarrow Empirical force field

- → Bonding: streching, bending, torsion, crossterms;
- → Not-bonding: van der Vaals, electrostatic, hydrogen, etc...
- ⇒ Accuracy depends on the force field employed

Molecular Simulation

Molecular Dynamics and Monte Carlo

- \Rightarrow Input:
 - \rightarrow Potential energy surface
- \Rightarrow Output:
 - \rightarrow Heat conductivity, viscosity, ...

\Rightarrow Time average

 \rightarrow Integrating in time

\Rightarrow Ensemble average

→ Sampling according to Bolztmann distribution

Molecular Simulation

Multiscale Simulation

Conclusion

⇒ Beyond CMOS: New ideas for nanoelectronics

\Rightarrow Molecular simulation is a natural way to check new ideas

\Rightarrow Tight collaboration between industry and academia

EU projects

How to express your interest

You are invited to submit an Expression of Interest that should include a short overview of the organisation's activities in the nanoelectronics sector as well as the motivation for participating in ENIAC. A short CV of the person from the organisation that would be the contact point (including a web link) should also be included.

¥

BMBF Nanotechnology

CADFEM

BMBF Nanoelectronics

