
Computational Thermodynamics Library: TDLIB’00
E.B. Rudnyi

Chemistry Department, Moscow State University, 119899, Moscow, Russia,
rudnyi@comp.chem.msu.su

http://www.chem.msu.su/~rudnyi/tdlib/

1. Introduction..2

1.1. Legal: GNU Public license ..2

1.2. Final goal ..2

2. Library Design ...4

2.1. Background for Phase Models Library (PHASE)..4

2.2. Background for Thermodynamic Algorithms Library (TD_ALGO) ...7

2.3. Background for Inverse Problem Library (VARCOMP)..8

2.4. Some Thoughts on Possible Implementations (a single muster-function, interpreting, object-oriented

approach) 10

2.5. External Representation of the library objects: XML (SGML)..15

3. Thermodynamicist Guide...18

3.1. Getting started...20
3.1.1. Simple data fitting – a linear regression (tdlib/ex/line - Ref. [8])...20
3.1.2. The Ba-Cu binary system (tdlib/ex/bacu - Ref. [9]) ...22

3.2. Describing phases. I. Simple objects in the PHASE library (tdlib/ex/phase)23
3.2.1. Object coef..24
3.2.2. Objects elem and formula ...25
3.2.3. Object PointPhase (tdlib/ex/phase/pp) ...25
3.2.4. Objects in category func_Tp (tdlib/ex/phase/pp)..26
3.2.5. Object species (tdlib/ex/phase/pp/) ..28
3.2.6. Object SimpleSolution (tdlib/ex/phase/simple/)...30
3.2.7. Objects in category FuncTpx (tdlib/ex/phase/simple) ..30
3.2.8. Object CuOx_ordered_plane (tdlib/ex/phase/y247/) ..34
3.2.9. Object NumericalDerivatives (tdlib/ex/phase/y247/)..34

3.3. Describing phases. II. Solution models with the internal parameters in the PHASE library

(tdlib/ex/phase)...35
3.3.1. Object CuOx_plane (tdlib/ex/phase/y123)...37
3.3.2. Objects AssociatedSolution and associated_solution (tdlib/ex/phase/ass)38

3.4. Describing phase equilibria. Objects in the TD_ALGO library ..42
3.4.1. Object PassThrough (tdlib/ex/algo) ...43
3.4.2. Object OutputFile ...43
3.4.3. Object convert...44
3.4.4. Object ComputeOutput (tdlib/ex/algo)...44
3.4.5. Object compute...44
3.4.6. Object PhaseProperty (tdlib/ex/phase) ...45
3.4.7. Object PhaseEquilibrium (tdlib/ex/bise) ..46
3.4.8. Object reaction (tdlib/ex/bise) ...52

3.5. Describing residuals. Objects and formats in the VARCOMP library...52
3.5.1. Object residual (tdlib/ex/bacu and tdlib/ex/line) ..52
3.5.2. Objects in the category output ...54

 2
3.5.3. Describing experimental values (tdlib/ex/bacu/ and tdlib/ex/line/)...54
3.5.4. Describing variance components (tdlib/ex/bacu/ and tdlib/ex/line/)55
3.5.5. Describing unknowns (tdlib/ex/bacu/ and tdlib/ex/line/)..56
3.5.6. Describing optimizers ...57

4. Case studies...59

4.1. Fictitious A-B binary system from the ThermoCalc Parrot guide (tdlib/ex/tc_ab)...........................59

5. Information for programmers..66

6. Question, discussion, bugs, etc ...67

7. Acknowledgment ..69

8. Literature ...69

1. Introduction

Modern thermodynamics heavily depends on computing. Most practical tasks do not have a

solution in the closed form, and thus, the use of thermodynamics is tightly bound with numerical
optimization methods. The term “computational thermodynamics”, coined as far as I know by Bo
Sundman, reflects this rather well. There are several integrated commercial packages available as well

as public domain and shareware software (for example, see lists [1, 2]). Still in my view, the situation
is quite far from the satisfactory one.

There are many unsolved fundamental problems that lead to phenomena in thermodynamics
circles referred to as "manual optimization" (for example, see [3]). Practically speaking, this looks

like as follows. A researcher set up a problem, runs the software and receives that "convergence has
not been achieved", "task has not been solved" or just "division by zero". The main reason is usually
tied with the unsatisfactory initial guess that has been chosen automatically by the software. Then, a

researcher has to meditate for a while and to find out the right initial guess by himself.
Another problem with the most current software is that it is available in the binary form only.

This means that with this software a researcher can solve mostly routine tasks and he/she can change
nothing within the software. If you are going to work at frontiers of science, this is unacceptable,

because in this case you cannot take part in the development of new thermodynamics ideas.

1.1. Legal: GNU Public license

Free Software Foundation (FSF) advocates freedom for the distribution of software (see GNU
manifesto [4]). In my view, this is exactly what the thermodynamics community needs. The main

requirement is that the software must be distributed with the source code and an individual must have
full rights to modify the source code in accordance with his/her necessities. In order to achieve this
goal, the GNU public license [5] has been developed by FSF and there is a lot of software already

available under these terms [6]. Note that free means freedom, not price.

1.2. Final goal

Fig. 1 presents an overview of the computational thermodynamics library. It should be
mentioned, that this idea is not new. The most commercial packages already have similar structure.

A researcher starts with a thermodynamic model - he/she suggests molar Gibbs energies for all
the phases in the system in question. For many phases the Gibbs energy can be found in the reference

 3

books or thermodynamics databases (see [1, 2]). If this is not the case, the researcher should guess
the functional form of the Gibbs energy and to leave there some unknown empirical parameters.

When the thermodynamic model is ready, then it is possible to compute equilibrium properties
of the system. This is achieved by means of thermodynamics algorithms and will be referred to as the

direct problem. However, when the empirical parameters within the Gibbs energy are unknown, then
first it is necessary to solve the inverse problem (optimizers in Fig. 1), that is, to process available
experimental values to estimate unknown parameters within the Gibbs energies.

thermodynamic

algorithms

phase models
optimizers

numerical library (FORTRAN)

thermodynamic

the molar Gibbs energy +

+ empirical

functions for

processing primary

experimental values

Fig. 1. A sketch for the computational thermodynamics library.

Solid arrows show dependencies between different pieces of the library. Thermodynamics

algorithms depend on phase models while optimizers rely on both phase models and thermodynamic

algorithms. After all, the inverse problem is consecutive applications of the direct problem while
unknown empirical parameters are changed.

All three parts of the library depends on numerical methods. Implementations for most
numerical approaches can be typically found as Fortran subroutines. Thus, the whole library can be

considered as a thermodynamic shell to numerical routines. The problem is not to develop new
numerical methods but rather to employ the latest achievements in numerical science.

Below is a list of criteria that, in my view, should be considered as must for the library.

• A user must be able to add new user-defined phase models and new thermodynamic algorithms to
the library.

• When the user is programming the new phase model, nothing (not a line) must be changed in the
thermodynamic and optimization routines.

• Optimization and thermodynamic algorithms must be generic and not depend on a particular phase

model.
Currently none of the available thermodynamic software satisfies with these criteria. The

current paper presents the library that approaches these goals.

 4

2. Library Design

The library, as shown in Fig. 1, comprises three parts. In the implementation presented they are
as follows: PHASE – phase models, TD_ALGO – thermodynamic algorithms, VARCOMP – the

inverse problem. Let us start with a look what mathematical tasks are solved by each part of the
library.

2.1. Background for Phase Models Library (PHASE)

The thermodynamic system consists from phases. In any case, at least a single phase must be

considered. A system that does not contain phases is outside of the thermodynamic scope. In the
present work, the terms phase and solution will be employed interchangeably because in the general
case the phase is a N-component solution. Unfortunately, the term solution has two unrelated

meanings, chemical and mathematical, and in the current paper I need both of them. Hope that this
will not bring much confusion.

A phase (solution) comprises several chemical substances (often they are referred to as

species). Each of them has a molecular formula, that can be expressed as a formula vector, ai (a set of

subscripts to the elements in the molecular formula). A set of all the formula vectors leads to the

formula matrix, A = {a1, ... , aN} (see, for example [7]), where N is the number of species. The
important characteristic of the phase is the number of components in the solution, which is

determined as a rank of the formula matrix

 C = rank(A) (2.1)

If C < N then the solution is usually referred to as an association solution, and a set of components
can be obtained as a subset of linearly independent species.

The task of the first part of the library, PHASE, is to create a framework for modeling the
molar Gibbs energy of a phase as a function of external variables: temperature, pressure and mole
fractions of the components

 Gm(T, p, x1, ..., xC) (2.2)

Note that by definition the sum of the mole fractions is always equal to one, Σixi = 1, and thus, the

number of independent variables here is equal to C + 1, where C is the number of phase components.
If we speak of an associated solution, than the mole fractions in Eq. (2.2) mean the gross-
composition. They should be computed as if the solution contains only the independent components

without any other species.
Quite often, for example in an associated solution, in the original Gibbs energy there are more

variables than the required number of independent external variables. We can express this in the
general form as follows

 Gm(T, p, x1, ..., xC; y1, ..., yN) (2.3)

where yi is the extra-variable. In the example of an associated solution, yi would mean the “true” mole

fraction of the i-th species. The extra-variables yi are sometimes referred to as internal variables.
Conventionally, all the internal variables are determined by minimizing the Gibbs energy over
unknown internal variables, y1, ..., yN, at constant external variables, T, p, x1, ..., xC. Let us denote the

values found in this procedure by the subscript eq. Then the values obtained are substituted into the
original Gibbs energy and, as a result, we still have the Gibbs energy as function of the external

variables only

 Gm{T, p, x1, ..., xC; y1,eq(T, p, x1, ..., xC), ..., yN,eq(T, p, x1, ..., xC)} (2.4)

Note that as shown in Eq (2.4), yi,eq, by itself is a function of T, p, x1, ..., xN. The major practical
consequence of introducing internal variables is that even if the original Gibbs energy is given in the

 5

closed form, the final Gibbs energy can be usually obtained by numerical methods only (it is highly
unlikely that the results of the minimization might be found in the closed form). The principal

difference between Eq. (2.3) and Eq. (2.4) is that while the latter concerns only the equilibrium states
of the solution the former describes the non-equilibrium states as well. The TDLIB user is supposed

to be interested in Eq. (2.4) only because the number of applications where it is necessary to deal
with Eq. (2.3) directly is very low.

The Gibbs energy is usually partitioned as follows

 Gm = Gref + Gmix (2.5)

where the first term relates to the Gibbs energies of pure components before mixing

 Gref = Σi xi G
*

m,i(T, p) (2.6)

where a superscript * reminds us that this quantity is for a pure component. The second term is called

as the Gibbs energy of mixing and corresponds to the process of mixing of pure components at
constant temperature and pressure. In turn, the Gibbs energy of mixing is sometimes partitioned to
the ideal Gibbs energy and the excess Gibbs energy

 Gmix = Gideal + Gexcess (2.7)

For the simplest models without internal parameters, the ideal Gibbs energy is estimated as follows

 Gideal = Σi xi RT ln xi (2.8)

The excess Gibbs energy is usually modeled as some sum of products of a function in temperature
and pressure and a function in mole fractions. Worthy of noting that both ideal and excess Gibbs

energies usually should be equal to zero when a composition vector corresponds to the pure
component.

The molar Gibbs energy of the phase as a function of external parameters (temperature,
pressure, and mole fractions, Eqs 2.2 and 2.4) can be considered as a master function, because all

other thermodynamic properties of the phase can be inferred from its molar Gibbs energy by means of
differentiating. The integral thermodynamic properties are obtained as follows.

 Sm = -(∂Gm/∂T)p,x

 Hm = -T2{(∂Gm/T)/∂T)p,x

 Cp,m = -T(∂2Gm/∂T2)p,x (2.9)

 Vm = (∂Gm/∂p)T,x

 αV = (∂2Gm/∂p∂T)x/(∂Gm/∂p)T,x

 κT = -(∂2Gm/∂p2)T,x/(∂Gm/∂p)T,x

In these equations, one must employ the Gibbs energy in the form of Eq. (2.2) or (2.4). If for some
phase model with internal parameters we do not have Eq. (2.4) in the closed form, it is always

possible to take the derivatives numerically. However even in this case, we can find at least the first
derivatives of the Gibbs energy analytically if we employ the mathematical rules for the derivatives of

the compound function.
We have

 Gm(T, p, x) = Gm{T, p, x, yeq(T, p, x)} (2.10)

where x and y are the vectors of mole fraction of components and internal variables accordingly.
Then

 (∂Gm/∂T)p,x = (∂Gm/∂T)p,x,y + Σi (∂Gm/∂yi)T,p,x,y(j≠i) (∂yi/∂T)p,x (2.11)

 6

Similar equations can be written for other first derivatives of the Gibbs energy. If the internal
parameters are found, as was mentioned above, by minimizing the Eq. (2.3) over internal variables,
y1, ..., yN, then Eq. (2.11) can be simplified because in this case the second term from the right side
happens to be zero, and we finally have

 (∂Gm/∂T)p,x = (∂Gm/∂T)p,x,y (2.12)

In some cases we need to apply Eq. (2.11) directly. To this end, it is necessary to compute the

derivatives (∂yi/∂T)p,x. Some problem here is that, as a rule, internal variables are not known as

functions of T, p, x in the closed form, but rather they are computed as a solution of a system of N
non-linear equations with N unknowns.

 f1(y1, ..., yN; T, p, x1, ..., xC) = 0

 … (2.13)

 fN(y1, ..., yN; T, p, x1, ..., xC) = 0

The notation above emphasizes that the values of internal variables that should be found by solving
Eq. (2.13) depends on temperature, pressure, and component mole fractions. In this case, the rule for

implicit derivatives allows us to find (∂yi/∂T)p,x required. What is necessary is to solve a system of N
linear equations as follows

 Σi (∂f1/∂yi)T,p,x,y(j≠i) (∂yi/∂T)p,x = - (∂f1/∂T)p,x,y

 … (2.14)

 Σi (∂fN/∂yi)T,p,x,y(j≠i) (∂yi/∂T)p,x = - (∂fN/∂T)p,x,y

The system of equation (2.14) can be easily modified in order to find (∂yi/∂p)T,x and (∂yi/∂xk)T,p,x(l≠k) if
necessary.

Partial molar properties can be also computed from the molar Gibbs energy. Let us take the
chemical potential as an example. By definition,

 µi = (∂G/∂ni)T,p,n(j≠i) (2.15)

where G = n Gm, n is total number of moles. After some work with derivatives, one can obtain

 µi = Gm - Σk xk (∂Gm/∂xk)T,p,x(j≠k) + (∂Gm/∂xi)T,p,x(j≠i) (2.16)

Similar formulas can be obtained for other partial properties. Note that after partitioning the Gibbs
energy, the partial properties will be also partitioned. In the case of the phase model with internal
parameters, the approach expressed above by Eqs (2.10) to (2.14) can be used to find

(∂Gm/∂xi)T,p,x(j≠i).
Pure or stoichiometric substances are considered to be a special, degenerated case of a solution

model, because formally they can be called as one-component solutions (N = 1). In thermodynamic
slang they are referred to as point phases. Here, the molar Gibbs energy depends on temperature and

pressure only, G*
m,i(T, p) (the mole fraction is always equal to one). As a result, all the partial

properties are equal to the integral molar properties, for example

 µ* = G*
m (2.17)

For pure substances, the Gibbs energy of mixing as defined above must be equal to zero. However,
there is some sense still to partition the Gibbs energy of a pure substance

 G*
m = Gref + Gmix (2.18)

where two terms have the same notation as in Eq. (2.5) for solutions but have a completely different
thermodynamic meaning.

 7

Thermodynamics laws permit us to determine experimentally the change in the Gibbs energy
only. If we see something like G = 5000 J.mol-1, this means that the author have chosen some

reference state and the Gibbs energy actually corresponds to some difference between the current and
reference states. For solutions in Eq. (2.5) the second term, the Gibbs energy of mixing is the

difference by definition and its numerical value is defined unambiguously. On the other hand, the
numerical value of the first term depends on the chosen reference state for the pure components (see
Eq. 2.6).

As a result, it is good to make a similar partition for pure substances (Eq. 2.18), when Gref
means some reference state and Gmix is the change in the Gibbs energy between the reference state

and the given pure substance. This can be achieved by introducing a reaction of formation of the pure
substance from chosen key substances, which will represent the reference state

 Σj νj Bj = C (2.19)

where C is the given pure substance and Bj are the key substances. Thus, for pure substances

 Gmix = ∆rG(19) (2.20)

 Gref = Σj νj Gm,j(Bj) (2.21)

The notation introduced by Eqs (2.20) and (2.21) might look strange. Yet, this allows us to

maintain a similar formal structure for pure substances and solutions, and as a result, this permits us
to develop a similar interface. After all, the point phase is a special case of a solution. Along this way,
a system can be considered as a vector of phases, some of them being solutions and some point

phases. Otherwise, this would require us to develop two different objects for point phases and
solutions. In my view, this would lead to unnecessary complexity for thermodynamics algorithms

because then it would be necessary to describe a system as two separate vectors. Finally, to make a
smoother transition between solutions and point phases, it is assumed that for the point phases

Gideal = 0 and Gexcess = Gmix.

2.2. Background for Thermodynamic Algorithms Library (TD_ALGO)

Generally speaking, an algorithm represents a transformation of the input vector x to the output

vector y according to the given rules. This concept was adopted in order to develop the general
interface for the algorithm in the TDLIB.

In the current release of the library, just one thermodynamic algorithm is implemented– the
computation of the phase equilibrium conditions. Let us consider the appropriate mathematics for this

case.
Let us assume that in the system at equilibrium there are P phases. In the general case, a

number of components for different phases might vary. Suppose, that the k-th phase has Ck
components, and the total number of species in the system is given as

 K = Σk Ck (2.22)

In Eq. (2.22) the phase Gibbs energies are considered to have the form of Eqs (2.2) or (2.4). In other
words, the task of computing the internal variables, if they exist, is assumed to be already solved.

Formula vectors of K species form a formula matrix of the system (see, for example [7]) and its rank
defines the number of independent components in the whole system

 C = rank(A) (2.23)

This equation is analogous to Eq. (2.1) with difference that here the whole system, comprising
several phases, is described.

The number of linear-independent chemical reactions that can take place in the system is given
as

 R = K – C = Σk Ck – C (2.24)

 8

The stoichiometric coefficients in these reactions form a stoichiometric matrix

 ν = {νij}, i = 1, …, K; j = 1, …, R (2.25)

Then, according to the equilibrium criterion, R equations should be held between the chemical
potentials of the phase components

 Σi νij µi(T, p, x) = 0 (2.26)

Chemical potentials of phase components in the system of equations (2.26) depend on temperature,
pressure and mole fractions of components. Hence, the total number of variables to take into account

in (2.26) is equal to

 L = 2 + Σk (Ck – 1) = 2 + Σk Ck - P (2.27)

because for the k-th phase there are only Ck – 1 independent mole fractions. The difference between
the number of variables and the number of equations is defined as a number of degrees of freedom

 F = L – R = 2 + Σk Ck – P – (Σk Ck – C) = 2 + C - P (2.28)

Eq. (2.28) expresses the well-known Gibbs phase rule.
For a given set of P phases, the task is to compose the system of equations (2.26), to choose F

from L variables and set their values, and finally to solve the system (2.26) for the other R variables
that will be considered as unknowns. Such a task is very common in the inverse problem, when there
are experimental results on phase equilibrium, and it is necessary to include them into the

simultaneous assessment of thermodynamic properties.
The next function will be used extensively in the TD_ALGO library

 Fmin = sqrt{Σj [Σi νij µi(T, p, x)]2} (2.29)

If it is zero (in numerical science, this means close to zero enough), then the system (2.26) is solved

and we have an equilibrium state, if it is not, then the value of Fmin is proportional to the proximity of
the current state to the equilibrium one.

In a general sense, in the algorithm PhaseEquilibrium implemented in TDLIB, the input vector

x is formed from the F variables set before solving the system (2.26), and the output vector y is
defined by the R variables found while solving the system (2.26).

Another important thermodynamic task – computation of the equilibrium composition in the
closed system at given temperature, pressure and mole numbers of elements [29] is the first on my list

of further extensions to the library.

2.3. Background for Inverse Problem Library (VARCOMP)

Let us assume that we have M experiments, and the i-th experiment comprises Ni experimental
points. In the general case, each experimental point in the i-th experiment can be expressed in the

next form

 {yij, xij, zi}; i = 1, ..., M; j = 1, ..., Ni (2.30)

where yij is what has been measured, xij is what has been changed and the vector zi contains other

values that have been fixed during the i-th experiment. In other words, Eq. (2.30) describes the
conventional experiment in physical chemistry, when only one variable is changed during the

experiment, even though the output variable is a function of several variables. As experimental
physical chemistry switches to multidimensional experimental design (modern analytical chemistry

appears to be doing so), the approach described below may need to be somewhat modified.
As was mentioned in Sec. 2.1 the phase Gibbs energies can contain unknowns to be determined

from the available experimental values (Eq. 2.30). Let us denote all the unknowns in the Gibbs

energies by the vector Θ. Now we can use thermodynamic laws to express the measured quantity, yij,
as function of controlled variables in the i-th experiment and unknowns in the Gibbs energies

 9

 yij = fi(xij, zi; Θ) + εij (2.31)

It is always possible for all thermodynamic experiments. As a result, the task of simultaneous
assessment is to obtain a set of the unknown parameters in the system of equations (2.31) that gives
the best description of the original experimental values in Eq. (2.30). The good description is usually

tied with small residuals

 εij = yij - fi(xij, zi; Θ) (2.32)

so the task is to find such a vector Θ, which gives the smallest εij.
There is a common problem tied with the application of Eq. (2.32). In many important cases,

the function fi(xij, zi; Θ) should be computed numerically, for example, as a result of solving

numerically a system of equations (2.26). In practice, this means that in order to compute fi(xij, zi; Θ)
some numerical subroutine should be called. However, the numerical subroutine well might not find

the solution required. A numerical subroutine could just return some code stating that convergence
has not occurred or that there were some other problems, which prevented the subroutine to find the
answer required. In thermodynamic tasks this is a common case when the initial guess for the vector

Θ is bad, and also when the equilibrium in question cannot be computed in principle. Commercial
packages available do almost nothing to help thermodynamicist in this case. The ThermoCalc, as I

was told, in this case returns an arbitrary value for the fI(xij, zi; Θ) with the hope that with the next

values of Θ this function will be computed normally. Typically, this problem requires an assessor to

find manually the better initial guess for the vector Θ. In thermodynamics circles such a situation is

known as “manual” optimization (see, for example [4]).

In order to cope with this problem in our library it is suggested that if fi(xij, zi; Θ) was not
computed successfully, then instead of Eq. (2.32) the residual is computed as follows

 εij = penalty(proximity to successful computing of fi) (2.33)

This means that some penalty is assigned to the residual. This should help to keep the whole

optimization going with some hope that the optimizer will finally find such a value of the vector Θ
when all the residuals could be computed successfully. The trick, to be fortunate along this way, is to
make the returned penalty depend on something that characterizes the closeness to successful

computing of fi. This would push the optimizer to change the vector Θ to the right direction.
In the current release of TDLIB, the problem described above appears in the PhaseEquilibrium

algorithm within the TD_ALGO library. The good penalty to return in the case of the failure of the
numerical subroutine here is Fmin (Eq. 2.29). This will be further discussed in Sec. 3.3.1.

The conventional approach to define the “best” solution is tied with the minimal value of the

sum of squares

 SS = ε' D(ε)-1 ε (2.34)

where ε is the vector of all residuals εij computed by Eq. (2.32) or (2.33) from all experiments (its

length is Σi Ni) and D(ε) is its dispersion matrix. In the weighted least squares, the dispersion matrix

is modeled by the diagonal matrix, containing the inverse variances of experimental points, D(ε) =

diag{D(εr,ij)
-1}.

There are two related problems, which limit the application of the weighted least squares. First,

all the variances should be chosen by an expert a priori before the assessment. Second, the diagonal
structure of the dispersion matrix does not allow us to treat systematic errors. To this end, the linear
error model was introduced in Ref. [8]

 εij = εr,ij + εa,i + εb,i(xij - xi) (2.35)

Here it is assumed that the total experimental error εij consists not only of the reproducibility error

εr,ij, but also of two systematic errors, εa,i and εb,i. Both systematic errors are constant within the i-th

experiment, but they are assumed to change randomly among different experiments. The first

 10

systematic error, εa,i, accounts for the shift systematic error and second, εb,i, for the tilt laboratory
factor (tilt systematic error).

The linear error model results in the dispersion matrix of experimental errors, D(ε), taking the
block-diagonal form (see details in [8]). Each block corresponds to a single experiment and its
elements are functions of three variance components

 D(εr,ij) = σ2
r,i, D(εa,i) = σ2

a,i, D(εb,i) = σ2
b,i (2.36)

The considerations above allow us to set up a more general task than the least squares as

follows. For the given experimental points (Eq. 2.29), it is necessary to determine the vector Θ with
unknown parameters in the thermodynamic model and unknown variance components contained in
the dispersion matrix simultaneously. The maximum likelihood method provides a framework to

achieve this goal, that is, to maximize

 L = − ln {det[D(ε)]} − ε' D(ε)-1 ε (2.37)

It also provides the criterion for the best solution for the system (2.31). The algorithm for maximizing
Eq. (2.37) under the linear error model given by Eq. (2.35) is described in Ref. [8]. The applications
of this approach to materials problem are described in Ref. [9 – 11].

It should be especially mentioned, that the weighted least squares is a special simplified case of
the new general task that can be reached by equating the variances of systematic errors (and hence

the systematic errors by themselves) to zero and supplying the ratio between variances of the
reproducibility error a priori. This means that the VARCOMP library can be used to solve the

conventional least squares tasks. If you are in doubts about Eq. (2.35), you can employ the traditional
treatment without any problem.

2.4. Some Thoughts on Possible Implementations (a single muster-function,

interpreting, object-oriented approach)

The key to the successful development of the whole library is to solve the requirements
described in Sec. 1.2. The main problem here is tied with the first part of the library. Let us discuss it.

The goal of the first part of the library may look rather simple: to make a framework for

modeling the phase molar Gibbs energy (Eq. 2.2) as a function of temperature, pressure and mole
fractions. The problem is that we do not know its form; actually it is known that in real applications it

could take rather diverse forms. However, from the viewpoint of other parts of the library the phase
Gibbs energy should look consistently, that is, it should take the temperature, pressure, and mole

fractions as input, and produce the Gibbs energy and/or its derivatives (see Eq. 2.9) as output. The
final goal is to represent a system as a uniform vector of phases, even though if the Gibbs energies of
different phases might be computed quite differently.

In order to discuss this problem, I will employ C++ although the problem by itself is language
independent. In C++ a class with a rather simple interface may express the requirement above.
class phase
{
private:
 ...
public:
 double G(double T, double p, double *x);
 double H(double T, double p, double *x);
 double S(double T, double p, double *x);
 double Cp(double T, double p, double *x);
 double V(double T, double p, double *x);
 double alpha(double T, double p, double *x);
 double kappa(double T, double p, double *x);
}

 11

The notation above states that there are some internal data structures (they should be described after
the keyword private) that are unimportant for other parts of the library. What is of real importance is

the external interface after the keyword public, that is, the functions to compute thermodynamics
properties of the phase.

The simplest approach to try to achieve our goal is to model Eq. (2.2) by some single master
function, that is, to stick to some analytical expression for Eq. (2.2). For example, for some binary
solutions the regular solution model can represent the Gibbs energy

 Gm(T, p, x2) = (1 - x2)G
*

m,1 + x2G
*

m,2 + RT (1 - x2) ln (1 - x2) + RT x2 ln x2

 + (1 - x2) x2 Σi (Ai + BiT + CiT ln T)(1 - 2x2)
i

The difference among solutions is supposed to be in number of terms in the sum and in different

values of interaction parameters, Ai, Bi, and Ci. If this equation would be enough for all the binary
solutions, then the task of its software implementation has had been quite evident and easy.

The simplicity of implementation in the case of a single master function comes from the fact
that the internal data structures will be the same for all the phases. As a result, the thermodynamics
properties can be executed by means of a call to the same functions.

This can be done relatively easy in any language including procedural ones, for example in
Fortran. Some problem with procedural languages along this way is that the syntax for a

function/subroutine call will be a bit messy because it is impossible to separate internal data structures
with external interface. For example, in C++ the class phase is employed as follows
phase foo; //variable foo represents a particular phase
cin >> foo; //foo is initialized from standard input
foo.G(T, p, x); //computing the Gibbs energy

In Fortran, this might be expressed as follows (assuming that the internal data structures are

within array COEF
C declaring internal data structures
 DOUBLE PRECISION COEF(100)
C initializing internal data structures from stream IN
 INIT_COEF(COEF, IN)
C computing the Gibbs energy
 G(COEF, T, P, X)

The main difference is that the internal data structures are hidden from the user in the case of
C++ and they are exposed to everybody in the case of Fortran. Guess, what happens if for any reason

it is necessary to change the internal data structures. In C++ the user should change nothing in his/her
program, and in Fortran all the functions calls are to be rewritten. However this is another problem
outside of the scope of the current paper, and I am not going to discuss it. After all, tastes differ.

From what I have seen so far, the most advanced master function is developed in ThermoCalc
[12] where it allows a user to employ regular, regular association and lattice model along the uniform

way. Still, it is quite clear that a single master function approach imposes rather strict limits on the
user. A single master function defines just subset of all the possible functions, and one can just hope

that this subset is enough for thermodynamic modeling. If some new phase models are developed in
the future that cannot fit in the Procrustean bedstead of the master function implemented in the
particular software, then a user of this software is in trouble. Actually, even in ThermoCalc the

number of master functions is more than one.
The extreme case of the single master function approach is interpretation of the expression

during the run-time. Note that interpreting removes almost all the limits imposed on the user, at least
principally. Now he/she can enter any functional form for Eq. (2.2).

When I have started working on this project, I thought that writing an interpreter is a nice
opportunity to rely upon (see [13, 14]). After several tries, I gave this idea up for three reasons:

 12

1) Performance. If for simple cases the Gibbs energy can be expressed rather compactly, for
multicomponent solutions it can take a page or even more. In order to interpret a very long

expression effectively it is necessary to do something special.

2) Derivatives. Besides the Gibbs energy by itself, the user needs its first and second
derivatives (see Eqs 2.9, 2.15 and 2.16). The approach with interpreting ordinarily means

that derivatives should be taken numerically. This hits precision dramatically. In principle,
the derivatives can be taken algebraically in the symbol form of by means of automatic

differentiating but in the case of long expressions this seems not to be very practical.

3) Models with internal variables (Eq. 2.3 and 2.4). It is necessary to implement some

internal solvers to deal with them. I think that it is the most problematic task to solve.
Thus, working with several master functions at once seems to be inevitable because at the

present time there is no an uniform thermodynamic model for all the phases. This means that it is

necessary to deal with several sets of internal data structures, and computing the thermodynamics
properties requires the use of several sets of functions. A typical approach within procedural

languages is to introduce some variable describing the model employed, for example
int code;

Then, while implementing the functions for thermodynamic properties, one has to utilize a sequence
of if and then statements
double G(double T, double p, double *x)
{
 if (code == 1) then
 {
 ..return G1(T, p, x);
 }
 else if (code == 2) then
 {
 ..return G2(T, p, x)
 }
 else if (code == 3) then
 {
 ..return G3(T, p, x)
 }
 ...
}

Along this way, the main problem is connected with the maintenance of the code in the future
when new functions should be added to the implemented ones. If a user of the library decides that it is

time to add a new model within the approach above, it would be necessary to insert changes in almost
all the library. I would certainly hate this. I prefer not to touch the working pieces of the code

because otherwise you never know what the consequences might follow.
Object-oriented programming gives a better framework to handle this situation (see more

complete discussion in [15]). In C++, a programmer can employ virtual functions. Now the class

phase have in the private area just a pointer to the abstract class RefPhase and actually is a simple

shell to the actual implementations (in other words, a smart pointer).
class phase
{
private:
 RefPhase *bar;
public:
 double G(double T, double p, double *x)
 {
 return bar->G(T, p, x);
 }

 13
...
}

The class RefPhase
class RefPhase
{
public:
 virtual double G(double T, double p, double *x) = 0;
 //=0 shows that this functions is not yet implemented
...
}

is declared abstract because it mere describes the interface required to implement and makes nothing
by itself. As a result a user cannot declare a variable of this type.

The main idea is that a user can derive new classes from RefPhase and to implement whatever

internal data structures and functions for computing thermodynamic properties. For example,
class solution1 : public RefPhase
{
private:
 ... //its own internal data structures
public:
 virtual double G(double T, double p, double *x)
 {
 ... //its own implementation for the Gibbs energy
 }
...
}

class solution2 : public RefPhase
{
private:
 ... //its own internal data structures
public:
 virtual double G(double T, double p, double *x)
 {
 ... //its own implementation for the Gibbs energy
 }
...
}

The most striking feature of this approach is that the example presented in the beginning of this
section
phase foo;
cin >> foo;
foo.G(T, p, x);

does not change at all. For a library user everything is the same. The difference is tied with the

question - which function will be called in the third line, foo.G(T, p, x): solution1::G(T,

p, x) or solution2::G(T, p, x). Because the function is declared as virtual, this question

will be solved at the run-time. If during input the pointer bar (private part of the class phase) is

initialized as a pointer to the variable of the class solution1, then the function

solution1::G(T, p, x) will be executed. If bar points to the variable of the class

solution2, then the function solution2::G(T, p, x) is called.

Now if a user writes the new solution model
class solution3 : public RefPhase
{
private:

 14
 ... //the new internal data structures
public:
 virtual double G(double T, double p, double *x)
 {
 ... //the new implementation for the Gibbs energy
 }
...
}

nothing should be changed in the previously written code.

new_ph.obj

phases.cpp apps.cpp

phases.obj apps.obj

apps.exe

new_ph.cpp

apps1.exe
Fig. 2. Adding new model of the multicomponent solution under the object-oriented approach.

This is illustrated in Fig. 2. Let us imagine that first we developed some solution models and

programmed them in the file phases.cpp. Then we wrote some thermodynamic algorithms to

work with in the file apps.cpp. After that, we compiled both files to produce object files

phases.obj and apps.obj and then finally linked object files to obtain the executable

apps.exe. Now we decide to add a new solution model and write it in the file new_ph.cpp. If

everything was done under the object-oriented approach described above, then during addition of the

new model nothing must be changed in the files phases.cpp and apps.cpp. The only

requirement is that the new class should be derived from RefPhase. Actually, we do not have even

recompile old files. All what is necessary is to compile the file new_ph.cpp and to link it with

previously created object modules phases.obj and apps.obj.

To conclude, I believe that the object-oriented approach allow us to build a library that will

resemble a construction set and to make a job of thermodynamicist closer to playing LEGO (see Fig.
3).

 15

Fig. 3. I wish I had the same joy while doing thermodynamic modeling as my daughter playing

LEGO.

2.5. External Representation of the library objects: XML (SGML)

Another important thing is the external representation of the library objects. The first priority
here is to develop a portable format that would allow thermodynamicists to exchange their local
databases among each other. The format should not be tied with a particular software but rather

follow the general needs in thermodynamic modeling (see Sec. 2.1 to 2.3). Also, as was already
mentioned, we should expect new models for multicomponent solutions to appear in the future.

Therefore, the format should provide necessary means to accommodate this. Finally, it would be
good if the format is intuitive and lucid for thermodynamicists.

In my view, Extended Markup Language (XML) that is a subset of Standard Generalized
Markup Language (SGML) gives a good framework to achieve these goals. XML allows us to create
specific formal rules for a document markup. After that, the documents obeying these rules can be

handled rather easily by computers. Moreover, these rules by themselves can be written formally in
what is called by Document Type Definition. As a result, the documents written in XML can be

considered to be highly portable.
Probably, everyone already heard about Hypertext Markup Language (HTML) - the official

language of documents on World-Wide-Web. However, not everyone might be aware that HTML is
a subset of SGML. Actually, HTML is just a Document Type Definition in SGML.

The general task of any computer format is to divide the content to the elements, and an

element may usually comprise other elements. A computer program reading input should be able to
find these elements and take appropriate actions. In order to make it possible, elements are separated

by delimiters. As such, the role of any format is to introduce delimiters for all the elements.
Within XML this task is solved by a single rule as follows. Each element is surrounded by two

tags, for example
<element_name> the element body </element_name>

where each tag starts with the symbol "<", ends by the symbol ">" and contains the element name
within. The difference between tags is in the symbol "/" preceding the element name in the ending tag.
At first glance, this may look a bit awkward, but for a format designer this single rule gives complete

freedom to formally describe any sophisticated relationships among elements. And after all, it is very
simple. Another important property of SGML is that the starting tag can contain the element

attributes, for example
<element_name attribute1=value1 attribute2=value2> the element body
</element_name>

 16

This is very handy, because quite often there are some element properties that should become known
to the software but for some reasons they can not be included into the element body.

XML by itself do not almost impose limits on what elements should be introduced, which
elements may contain what elements, what attributes the elements can possess. This is a task of the

format designer who should develop the Document Type Definition. However, this is another
question, and I will not go into further details because the two rules written above are enough for
working with my library. Much more information on SGML are available on-line [16], and the

complete description of SGML is in the book [17].
Let me explain this by means of a small example. The Gibbs energy of mixing of the Ba-Cu-Y

ternary liquid melts can be described as follows

 Gmix = Gideal + x1x2(-7191+3.363T) + x1x385960

 + x2x3{v2(-120940+21.347T) + v3(-43980+8.133T)}

where x1, x2, and x3 are mole fractions of Ba, Cu, and Y accordingly and v2 and v3 are some functions
of the mole fractions. If the functional dependence is hard-programmed as a generalized polynomial

within the software, the data file can contain something like as follows
Liquid
Ba Cu Y
-7191 3.363
85960
-120940 21.347 -43980 8.133

The general problem with data files as above is that later on it is quite difficult to remember
which number stands for what coefficient in the model. It would be good if the data file were self-

descriptive (I think that from this perspective the ThermoCalc format for the Gibbs energy is the best
so far). The best way to describe the place of the numbers is to keep the whole expression in the data

file, for example
Liquid
Ba Cu Y
Gid + x1*x2*(-7191 + 3.363*T) + x1*x3*85960 + x2*x3*(v1*(-120940 +
21.347*T) + v2*(-43980 + 8.133*T))

Now there is almost no problem for a human being to read this file but unfortunately this

cannot be said about computers. Remember that the goal is not to interpret this expression. The
functional dependence is assumed to be hard-programmed, and the software still requires just

numbers for input. The expression by itself is redundant and should be seen as text labels, which
explain assignment of numbers to a person. Then, to find a middle ground, it is necessary to help the

software. As a result, in my format the Gibbs energy of Ba-Cu-Y melts by means of SGML is written
as follows
<SimpleSolution class=phase id=Liquid>
 <components> Ba Cu Y </components>
 <IdealMixing class=FuncTpx>
 +R*T*x(Ba)*log(x(Ba))
 +R*T*x(Cu)*log(x(Cu))
 +R*T*x(Y)*log(x(Y))
 </IdealMixing>
 <Polynomial class=FuncTpx formalism=Muggianu>
 +x(Ba)*x(Cu)*(
 <func_x> + </func_x>
 <Cp_zero class=func_Tp>
 (
 <coef> -7191 </coef> +
 <coef> 3.363 </coef> *T)
 </Cp_zero>

 17
)
 </Polynomial>
 <Polynomial class=FuncTpx formalism=Muggianu>
 +x(Ba)*x(Y)*(
 <func_x> + </func_x>
 <Cp_zero class=func_Tp>
 (
 <coef> 85960 </coef> +
 <coef> 0 </coef> *T)
 </Cp_zero>
)
 </Polynomial>
 <Polynomial class=FuncTpx formalism=Muggianu>
 +x(Cu)*x(Y)*(
 <func_x> +v(Cu)* </func_x>
 <Cp_zero class=func_Tp>
 (
 <coef> -120940 </coef> +
 <coef> 21.347 </coef> *T)
 </Cp_zero>
 <func_x> +v(Y)* </func_x>
 <Cp_zero class=func_Tp>
 (
 <coef> -43980 </coef> +
 <coef> 8.133 </coef> *T)
 </Cp_zero>
)
 </Polynomial>
</SimpleSolution>

If the entire markup is removed we receive the data file as in the previous example, but now, because
of the markup, it is relatively easy to write the code to handle this. All the elements will be explained

in the next sections.

 18

3. Thermodynamicist Guide

The TDLIB make should build the binary assess, which can handle a variety of

thermodynamic tasks. This section presents the TDLIB library from the perspective of the assess

user. The current assess functionality is limited. It contains just what I needed for my projects so

far. So, if you need to solve a sophisticated thermodynamic problem, you might need to add
functionality. However, as was mentioned in the Introduction, the TDLIB presents a framework or

infrastructure when the new thermodynamic models and algorithms can be added with absolutely no
changes in the previously written code.

The binary assess is old-fashioned. It reads input text files and writes output text files. The
responsibility of the user is to prepare input files and to process output files. In the current release,
the TDLIB could produce the text files that you can just view or import into the plotting software of

your choice and draw a graph. Also the TDLIB could create files, which are directly loadable to the
Gnuplot (http://www.cs.dartmouth.edu/gnuplot_info.html, it is free software). As such, creating plots

with TDLIB and Gnuplot is almost automatic.
All the files for assess are plain ASCII files, and in order to create them you need a text

editor, for example NOTEPAD. In my own work, I employ VIM (http://www.vim.org, it is free

software). Besides other advantages, it has nice syntax highlighting feature (including SGML) that
makes working with the files for the TDLIB a bit easier.

The input files are pretty sophisticated. As was discussed, they are based on XML, and you are
supposed to write the straight XML-like elements. It means that you need to have some

programming experience. The main idea behind using XML is that this gives a solid background for
the future development. In the future it would be rather an easy task to create the Graphic User
Interface that deals with these files while providing the user the menu bar and different dialog boxes

to work with the objects. Let us take an HTML as an example. Nowadays, almost nobody writes the
straight HTML but rather people use GUI’s, even though the files created by the different GUI

programs can be transferred all over the world due to the background HTML standard.
Still, in the current release of the TDLIB there is no GUI, and you should be ready to work

with the plain ASCII files. There are two main reasons. First, the current XML-like elements,
developed by me, are not in the stable state. There are a lot of changes as compared with the
TDLIB’99, and I expect a lot of changes in the future. It takes quite a time, in order to develop the

language. Second, I do not like creating GUI. Personally, I am quite comfortable with console
applications, even though I do not mind using GUI’s created by others.

The library implements objects, shown in Table 3.1, that, in my view, are necessary for
applications of chemical thermodynamics. In the present section, they will be described from the
assess user perspective, that is, this means how the objects can be written in the file and what the

user can do with them.
Note that some objects are referred to as polymorphous. This means that they belong to the

some category. Objects in the same category model the same concept, their behavior is similar and
they can be used interchangeably. For example, all the phase objects model the Gibbs energy of the

phase, Eq. (2.2) and you, for example, can freely change SimpleSolution to AssociatedSolution. The
user can extend polymorphous category, if he/she is proficient in programming. As was discussed in

Sec. 2.4, the addition of a new object type to the polymorphous category changes nothing the
previously written code.

 19

Table 3.1. Objects available in the TDLIB’00

Category Objects Polymorphism Part of the

library

Unknown in the vector

Θ

coef no PHASE

Chemical element elem no PHASE
Chemical formula formula no PHASE

Function in temperature
and pressure (func_Tp)

null_Tp, Cp_zero, Cp_const,
Cp_BB2, Cp_BB2_ref, Cp_BB4,
IVT_Tp, SGTE_Tp, ideal_gas,

V_const, alpha_const,
alpha_kappa_const,

alpha_kappa_const2,
compound_Tp, complex_Tp,

calc_Tp

yes PHASE

Species species no PHASE
Function in

temperature, pressure
and mole fractions

(FuncTpx)

NullFuncTpx, IdealMixing,

Reference, RedlichKister,
HochArpshofen, Polynomial

yes PHASE

N-component solution

(phase)

NullPhase, PointPhase,

NumericalDerivatives,
SimpleSolution, CuOx_plane,
CuOx_ordered_plane, ApBq a,

AssociatedSolution,
associated_solution

yes PHASE

Algorithms PassThrough, PhaseProperty,
reaction, PhaseEquilibrium

yes TD_ALGO

Transformation

y = f(x1, x2, ..., xn)

convert no TD_ALGO

Intermediary between

algorithms and other
objects

compute no TD_ALGO

Objects, describing the
computation of the
array of numbers

NullOutput, ComputeOutput,
SeriesOutput, ResidualOutput,
SpinodalOutput

yes TD_ALGO,
VARCOMP

Creating output file OutputFile no TD_ALGO

Residual (Eq. 2.32) residual no VARCOMP

Statistical hypotheses
(Eq. 2.35 and 2.36)

series no VARCOMP

Experimental series
(Eq. 2.30)

series no VARCOMP

Global options globals no VARCOMP
a This object is not currently available because at the last moment I have found some problem

with its implementation.

 20

3.1. Getting started

There are several file types, which assess can read for input. Any project must contain one

or more model files (.mod) where there should be description of the problem to solve and of the

output to compute. Into the model files, one can place objects representing phases, algorithms to
solve (phase equilibria) and output to make. Phase objects define the models for the phase Gibbs

energies. Phase equilibrium objects define what phase equilibria should be taken into account and
their properties in respect to Eq. (2.26). The output objects define what information should be
computed to write to the file or to prepare for plotting with Gnuplot. The model files are the most

difficult to prepare, because it is necessary to learn format for almost all the objects listed in Table
3.1.

The direct problem, that is, computing equilibrium properties for the given system, can be done
by means of assess as follows
assess model_file1[.mod] model_file2[.mod] … –o output_file

where the user should specify which model files to process, and what base name should be given to
the output files. Output objects, defined in the model files, should specify the extension that will be

added to the base name output_file from the command line. As a result, the command will

produce a number of files with the same name output_file but different extensions. If no output

file is specified, all the output is done to the standard output.
In order to solve the inverse problem the user should make the additional preparation. First,

within the model files (typically within the Gibbs energies) it is necessary to declare unknowns in the

form of
<coef name=B unknown=1> 6.5 </coef>

This specifies that the optimizer should take the initial value for the unknown under name B equal to
6.5 and then it should find the better value by maximizing the likelihood function (Eq. 2.37). In order

to make it happen the user should add to the model files the description of the residuals (Eq. 2.32) for
each experiment and to prepare the data file (.dat) with the experimental values by themselves in the

form of Eq. (2.30). Also, the user should take an expert decisions about the quality of the available
experiments (statistical hypotheses) and to express them in the set file (.set). Roughly speaking, the
set file defines the weighted matrix.

Then, in order to run the inverse problem, one should type
assess model_files –d data_files –s set_files –o output_file

Here the program read the model files, the data files and the set files, then it starts maximizing Eq.

(2.37). The vector of residuals ε is computed for the values in the data file in accordance with Eq.

(2.32). fi(xij, zi; Θ) should be defined in the model file by means of the objects, representing residuals.

The set files will be used to specify unknowns in the dispersion matrix D(ε)-1. After the optimization
procedure stops, the program will compute the results, required by the output objects for the final

solution obtained.
Now, before going to boring details, let us consider two simple examples.

3.1.1. Simple data fitting – a linear regression (tdlib/ex/line - Ref. [8])

Let us start with the simplest case, not related to thermodynamics. Suppose, it is necessary to

determine the parameters a and b from the several experimental according to

 yij = a + b xij + εij

This is a pretty primitive task, but this would allow you to understand the meaning of Eq.
(2.35). This case is discussed in Ref. [8] where the special attention is paid to the comparison of the
linear error model with the conventional least squares.

In the directory tdlib/ex/line there are next files (see Ref. [8] for the discussion of pseudo-
experimental values and the results).

 21

File Description

ini.mod The model file
line1.dat Six pseudo-experimental series, when the systematic errors are absent
line2.dat, line3.dat,

line4.dat

Six pseudo-experimental series with systematic errors. The systematic errors

increase from line2.dat to line4.dat
ml.set The systematic errors are taken into account. The hypothesis σ2

r,i = σ2
r, γa,I =

γa, γb,i = γb
wls.set The ordinary least squares. The systematic errors are ignored. The hypothesis

σ
2
r,i = σ2

r, γa,i = 0, γb,i = 0

It is supposed there are results of six experiments {yij, xij} from which we would like to

determine the parameters a and b. The pseudo-experimental series are in the .dat files in the form

as follows,
ser_i,
line,
y x,
100 10,
…
140 20;

While the pseudo-experimental values have been generated in the files line2.dat to line4.dat

the shift and tilt systematic errors have been added to each series.

The file ini.mod defines what assess should do with the experimental results. First, there

is the residual object which computes ycalc = a + b xij and forms a residual yij - y
calc. Then goes the

OutputFile object which directs to prepare a file with the extension xy to plot with Gnuplot.

The command
assess ini –d line1 –s ml–o l1_ml

process the values from the line1.dat under the hypothesis defined in ml.set and produces

several output files l1_ml.*. l1_ml.lst is the main listing, l1_ml.par is the file, containing

the values of unknown parameters found, l1_ml.xy contains output of the OutputFile object.

You can draw a Fig. 2a from Ref [8] by using the command
gnuplot l1_ml.xy -

These files and also the results of the next commands
assess ini –d line1 –s wls –o l1_wls
assess ini –d line2 –s ml –o l2_ml
assess ini –d line2 –s wls –o l2_wls
assess ini –d line3 –s ml –o l3_ml
assess ini –d line3 –s wls –o l3_wls
assess ini –d line4 –s ml –o l4_ml
assess ini –d line4 –s wls –o l4_wls

are in the subdirectory out. They process all the pseudo-experimental sets under the two different

hypotheses, and it is possible to see the difference between the conventional least squares method and
the new approach.

Note that the change to the more complicated models is very simple - you have just to change
the function presented within the convert object. Because it does real interpreting it is possible to

write down any function in the closed form within it.

 22

3.1.2. The Ba-Cu binary system (tdlib/ex/bacu - Ref. [9])

There are two intermetallic compounds in the Ba-Cu system, BaCu and BaCu13. There are
experiments on the enthalpy of formation of BaCu, the partial enthalpy of the melt, the liquidus

temperatures as a function of the melt mole fraction, and the non-variant temperatures.
In the directory tdlib/ex/bacu there are next files (see Ref. [9] for more details on the task in

question).

File Description

sys.mod The description of the Gibbs energies
alg.mod The description of the phase equilibria

res.mod The description of the residuals to treat the experimental values
h.out.mod The output to plot the partial enthalpies
pd.out.mod The output to plot the phase diagram

non.out.mod The output to print the non-variant points and the estimates of the melt
spinodal

expr.dat The experimental values, the data file (see Table 1 in [9])
ml.set The hypotheses for the recommended solution (solution ML in [9])

ml1.set The hypotheses for the solution ML1 in [9] (systematic errors are equated to
zero, but the reproducibility errors are left unknown). This is the intermediary
case between wls.set and ml.set.

wls.set The weighted least squares assumptions.

The sys.mod file defines four point phases, Ba_s, Cu_s, BaCu and BaCu13 and the binary melt,
L. Note that the point phases are related to the one mole of atoms. The Redlich-Kister polynomial is

employed to describe the melt (phase L). Then in the alg.mod file there are several objects, defining
four mono-variant equilibria, Ba-L, BaCu-L, BaCu13-L, Cu-L, and three non-variant equilibria, Ba-L-
BaCu, BaCu-L-BaCu13, BaCu13-L-Cu. After that, in the res.mod file there are residuals for the

enthalpy of formation of BaCu, the partial enthalpies of Ba and Cu in the melt, the liquidus
temperatures and non-variant temperatures.

There are three files with the output objects. First, h.out.mod prepares the plot in the Gnuplot
format for the partial enthalpies, the second, pd.out.mod does the phase diagram. The third file prints

in the text format the state of the non-variant points and the estimate of the melt spinodal
respectively.

The next commands
assess sys alg res h.out pd.out non.out –d expr –s ml –o ml
assess sys alg res h.out pd.out non.out –d expr –s ml1 –o ml1
assess sys alg res h.out pd.out non.out –d expr –s wls –o wls

will compute the three solutions for the Ba-Cu system according to the three different set of
hypothesis. Each run will produce (see out subdirectory) the .lst file with the main listing, .par file
with the new values of unknown parameters, and four files defined by the output objects (.pd, .h, .non

and .mis). It is possible to plot the partial enthalpies and the phase diagram with the Gnuplot as
follows
gnuplot ml.h -
gnuplot ml.pd -

The main problem of the assessment, that is, how to choose the initial guess for the unknown
parameters, is left without the discussion in this example, because the initial guess in the sys.mod

corresponds to the solution recommended in [9].
You can try what happens when the initial guess in not that good. In the ini.par file all the

unknowns are equated to zero, what means that the ideal solution and ∆G = 0 for the stoichiometric
phases are employed as the initial guess. This is rather a rough initial guess. There is no a

 23

straightforward answer how to come to the good initial guess. I would recommend to start the phase
diagram optimization with the weighted least squared because at the beginning it is necessary to find

some solution with the required topology of the phase diagram. And when the initial guess is rough if
in addition to the unknowns in the Gibbs energy one puts unknowns to the variance components, then

it will be no good.
It is possible to supply the initial guesses from the .par file to the assess with the option –v.

Because the Ba-Cu phase diagram is rather simple, the next command will give the desired solution

without any additional tricks from the rough initial guess taken from the ini.par file
assess sys alg res –v ini –d expr –s wls –o r1

The solution r1 should be equivalent to the wls solution, obtained above. Now we can use

this solution in order to try the more complicated statistical hypotheses
assess sys alg res –v r1 –d expr –s ml1 –o r2
assess sys alg res –v r1 –d expr –s ml –o r3

The other strategies to generate the successful initial guess will be discussed in the Case Studies
section.

3.2. Describing phases. I. Simple objects in the PHASE library (tdlib/ex/phase)

The main object in the PHASE library is phase. Actually, it is a category of the polymorphous

objects, which represent the phase Gibbs energy, and each object within this category deals with a
particular phase (solution) model. There are underlying objects (coef, elem, formula,

func_Tp, species and FuncTpx) that are used to build the phase objects, and in order to

understand the phase object we have to begin with the underlying objects. Unfortunately, it is

impossible to show the examples of the underlying objects with the assess program directly – it

works just with the phases. As a result, we will start with coef, elem, and formula objects. They

are rather simple and they can be presented without the live examples. Then we will go to the
PointPhase object and discuss with its help the func_Tp and species objects. After than, we

will consider SimpleSolution object that is just a container for the FuncTpx objects. And

finally, we will discuss other objects in the phase category. CuOx_plane is the lattice model for the

two-component solid solutions of high temperature superconductors similar to YBa2Cu3O6+z,
CuOx_ordered_plane is the lattice model for the two-component solid solutions of high

temperature superconductors similar to Y2Ba4Cu7O14+w, ApBq is the lattice model to describe non-

stoichiometric compounds ApBq±x, and AssociatedSolution is a generalized association

solution model. Once more, if you need to work with other solution models, not included in the
library, you can do it if you can master programming in C++ (see the code and the Programming

Guide if I will finally write it).
The format for all phase models can be expressed generally in the next form

<phase_model class=phase id=phase_id>
…
</phase_model>

where the element with the name phase_model has two attributes. The attribute class has the

same value (phase) for all the phase models, and it shows that the object phase_model belongs

to the phase category. The attribute id is the phase identifier, and it is supposed to be unique within

the phase namespace. Within the element, there goes the information specific for each phase model.

The phase can be referenced from other object as follows
<phase class=phase IDREF=phase_id></phase>

where the phase_id is supposed to be defined previously.

There are several numerical parameters that affects all the TDLIB library. They can be changed

from the default values by means of the globals object. Below there are few of them with the

default values related to the PHASE library. The others will be introduced later on.

 24
<globals
 DefaultT=1000
 Defaultp=1
 R=8.31441
 FirstDerivativeStep=1.49012e-07
 SecondDerivativeStep=6.05545e-05
 GetNuTolerence=2.22045e-13>
</globals>

When a user does not specify the temperature and pressure, they will default to DefaultT

and Defaultp. The universal gas constant is equal to R. When the derivatives are taken numerically

the library employs FirstDerivativeStep and SecondDerivativeStep as a relative step

values for the first and second derivatives accordingly.
When it is necessary to determine the coefficients for the chemical reaction, TDLIB employs

the algorithm, described in Ref. [7]. To this end, the linear system of equations based on the formula

matrix is solved. If in the resultant vector some element by the absolute value will be less than
GetNuTolerence, then it is considered to be zero.

3.2.1. Object coef

The object coef is a bridge between the PHASE and VARCOMP libraries. It represents a

value that may need to be found during the inverse task (members of the vector Θ in Eq. 2.31). For
the PHASE and TD_ALGO libraries by themselves (direct problems) it is enough just an anonymous

form of coef
<coef> numerical expression </coef>

where within the element one can put any numerical expression, for example
<coef> 44.5*3.5 + 5.67 </coef>

which will be evaluated on input. Here one can use all the arithmetic operations (+, -, *, /, ^),

functions (acos, abs, asin, atan, cos, exp, log10, log, sqrt, tan) and the constant R (by default R =
8.31441).

If we would like to optimize the value defined by coef from the experimental results, then it is

necessary to add two attributes - the coefficient name, and flag, whether this variable should be

optimized. Then the XML representation has the next format
<coef id=variable_name unknown=flag_value> numerical expression
</coef>

The attribute id can take any string, and it shows the coefficient name that will be used by the

optimizer. The variable_name should be unique within the coef namespace. The attribute

unknown can be equal either 0 (false) or 1 (true). All the coefficients with the attribute

unknown=1 are included in the vector Θ, and if unknown=0, then the coefficient is fixed and it is

not changed during the solution of the inverse problem. The value of the attribute unknown as well

as the value of the coefficient can be changed in the parameter file (.par).
Examples:

<coef id=La1 unknown=1> 3.5 </coef>
<coef id=a unknown=0> 1.5347 </coef>
<coef> 4.68 </coef>

In the first example, the coefficient name is equal to La1, the variable should be optimized in the

inverse task and its initial value is 3.5. In the second example, the coefficient name is equal to a, and

the coefficient is fixed. The difference between the second and the third line is that the coef a will

be listed in the .par file and the attribute unknown can be change from there. The third coef is

not accessible by the optimizer at all.
There are more features in the coef object, but they are unimportant for the PHASE library,

and they will be introduced later on - in the VARCOMP library.

 25

3.2.2. Objects elem and formula

The objects elem and formula do not have a special SGML format because they can

unambiguously be represented by a single token, that is, a string with no spaces. For example,

CH3CH2OH and Al2(SO4)3 are considered to be valid chemical formulas. Note that it is possible to
show a molecular structure in some extent by means of parentheses and repeated structural units. In

addition to element names, formula can contain plus or minus to show the electron (its name is

assumed to be "e"), "+" means e-1, "-" means e1, for example, C60+, F-. In my implementation it is
allowed to add some comment to the chemical formula after the underscore symbol, for example,

Al2(SO4)3_alpha. This allows us to describe several modifications of the substance, for example,
C_diamond and C_graphite.

The element index is represented by a double-precision number. This allows for such notation
as Ba0.5Cu0.5 and Ba0.0714Cu0.9286, if this is desired.

The formal description of the formula syntax can be expressed as follows (actually, there

should be no spaces between the formula parts).
formula:
 primary
 primary formula
 formula +
 formula -

primary:
 elem
 elem double
 (formula)double

The chemical formula consists from chemical elements. Note that there is new ambiguity in

terminology in the present paper: there is a chemical element and there is an XML element. The
chemical element name is assumed to be one or two characters. The chemical element name is case
sensitive. By default, one can use all the chemical elements from the Periodic Table. They defined in

the file elem.cpp (see LIST_ELEMENTS).
A user can define his/her own set of elements. Just put the SGML element elements at the

beginning of the first .mod file. For example,
<elements>
A 100
B 150
C 50
</elements>

This defines that in all the formulas one can use three chemical elements only, A, B, and C. The
numbers are equal to the chemical element masses.

The order of chemical elements in the SGML element elements determines their sorting

order. By default, the sorting order of chemical elements is equal to that accepted in Ref. [18]. For

the program assess, the sorting order of the chemical elements almost does not matter.

3.2.3. Object PointPhase (tdlib/ex/phase/pp)

The object PointPhase models one-component solutions, that is, stoichiometric substances.

As such, its Gibbs energy is a function in temperature and pressure only, G(T, p). In order to define

it, we need a chemical formula and a function in temperature and pressure. In TDLIB the point phase
is considered as a wrapper to the species object. For example,
<PointPhase class=phase id=test>
 <species> Y2O3
 </species>
</PointPhase>

 26

In the directory tdlib/ex/phase/pp/ this is in the file ex1.mod. The file out.mod defines the

output of thermodynamic properties of the phase test. If we give a command
assess ex1 out

we should see that in our case all the properties are equal to zero, because by default the function in

temperature and pressure is equal to zero.
A species as well as the point phase is an entity that can be characterized by a chemical formula

and the Gibbs energy in temperature and pressure. However, there is a subtle difference between a

species and a point phase. A point phase certainly contains one species. Yet, if we consider equilibria
in solutions we might need some species, which do not have the corresponding point phases. As a

result, TDLIB contains species, which could be used in any solution model, and point phases, which
represent one-component solutions.

Now let us see, how to define the function in temperature and pressure within the species

object and then what other features the species object possesses.

3.2.4. Objects in category func_Tp (tdlib/ex/phase/pp)

The objects in category func_Tp shown in Table 3.2 represent the Gibbs energy as a function

in temperature and pressure only, f(T, p) (for example, the Gibbs energy of a species). The

relationship of f(T, p) with the Gibbs energy is that the derivatives of f(T, p) are considered to comply
with Eq. (2.9), otherwise it can be an arbitrary function in temperature and pressure.

Table 3.2. The description of the objects in the category func_Tp (pressure is assumed to be

in atmospheres, po = 1 atm).

Object Description

null_Tp G(T, p) ≡ 0

Cp_zero G(T, p) = a + bT (Cp = 0)

Cp_const G(T, p) = a + bT + cTlnT (Cp = const)

Cp_BB2 G(T, p) = a + bT + cTlnT + dT 0.5 (Cp = -c + 0.25dT -0.5 [19])

Cp_BB2_ref G(T, p) = Ho - SoT + a(T - To – Tln(T/To)) + 4b(T 0.5 - To
0.5)

(Cp = a + bT -0.5 [19])

Cp_BB4 G(T, p) = a + bT + cTlnT + dT 0.5 + eT -1 + fT -2

(Cp = -c + 0.25dT -0.5 - 2eT -2 - 6fT –3 [19])

IVT_Tp G(T, p) = a + bT + cTlnT + dT 2 + eT 3 + fT 4 + gT -1
(Cp = -c - 2dT - 6eT 2 - 12fT 3 - 2gT –2) [18]

SGTE_Tp G(T, p) = a + bT + cTlnT + dT 2 + eT 3 + fT 7 + gT -1 + hT -9

(Cp = -c - 2dT - 6eT 2 - 42fT 6 - 2gT -2 - 90hT –10) [20]

ideal_gas G(T, p) = RTln(p) (V = RT/p)

V_const G(T, p) = vp/po (V = v/po)

alpha_const G(T, p) = veαT(p/po - 1) (V = veαT/po)

alpha_kappa_const G(T, p) = ueαT(1 - eκ(1 - p/po)) (V = uκeαTeκ(1 - p/po)/po)

alpha_kappa_const2 G(T, p) = (v/κ)eαT(1 - eκ(1 - p/po)) (V = veαTeκ(1 - p/po)/po)

calc_Tp A simple interpreter for any G(T, p) in the closed form.

complex_Tp A simple shell to combine two objects G(T, p) = G1(T, p) + G2(T, p).

compound_Tp Contain a vector of func_Tp (classes within the vector must be in

the hierarchy of simple_Tp) to work with compound functions in

temperature and pressure.

 27

Probably, there are too many objects in this category, and it would be possible to leave here

less objects. The reason is that this is the first polymorphous category of objects I have created and it
has been used extensively as a “shooting-range” to check how it works.

In the directory tdlib/ex/phase/pp you will find files with the name after the func_Tp object

which show you their syntax. The point phase is used as a shell to demonstrate how func_Tp

objects works. The command as follows
assess cp_const out

will show you the results of the computation of the thermodynamics properties from the given

func_Tp object.

All objects func_Tp have the attribute class which has the same value, func_Tp, and it

shows that this object belongs to the func_Tp category.

The simplest object is null_Tp which represents the case when G(T, p) = 0. It is usually used

as a stub when you have to place a func_Tp object but for some reason you want it to be equal to

zero. Actually, ex1.mod is equivalent to null_tp.mod because in the first case the null_Tp

object was added implicitly.
The classes from Cp_zero to SGTE_Tp represents some special cases for G(T, p) when the

mole volume is assumed to be zero (V = 0, see Table 3.3). The objects from ideal_gas to

alpha_kappa_const2 represent special cases for some equations of state (Cp = 0, see Table

3.3). The functions and their derivatives for these objects are hard coded. As a result, you can change

nothing in the format of these elements but to change the values of coef objects within them. The

main idea here is to make the file format self-describing. However, the text outside coef elements is

considered by the software just as text labels, and there is absolutely no interpreting when the
thermodynamic functions, associated with these objects, are computed.

Two objects of different func_Tp objects might be equivalent from mathematical point of

view, for example as in the case below
<Cp_zero class=func_Tp> (
 <coef> 10531 </coef> +
 <coef> 348.5 </coef> *T)
</Cp_zero>
<Cp_const class=func_Tp> (
 <coef> 10531 </coef> +
 <coef> 348.5 </coef> *T+
 <coef> 0 </coef> *T*log(T))
</Cp_const>

However there is some difference between them if we compare the computer resources required. The
second object takes more RAM because it needs to reserve space for additional information. Also,
computing in the second case can take a bit more time, because the computer might well take log(T)

before multiplying it by zero. I think this depends on a compiler.
The difference between Cp_BB2 and Cp_BB2_ref is in different meaning of the coef

objects. The functions are equivalent between each other, as they can be transformed to each other
with no loss of information. However, if we consider the inverse problem, then the unknowns which

could be introduced will be different, and it might influence the numerical properties of the inverse
problem. The same concerns the alpha_kappa_const and alpha_kappa_const2 objects.

The object SGTE_Tp can deal with magnetic contribution as described in Ref. [20]. To this

end, one can add three attributes Bo, Tc and pm to the object. For example,
<SGTE_Tp class=func_Tp Bo=0.22 Tc=95 pm=0.28>
…
</SGTE_Tp>

 28

The object complex_Tp combines any two func_Tp objects. This allows us to combine a

function, describing the temperature dependence of the heat capacity, with another function,

describing the equation of state. Run
assess complex_tp out

and compare the output with
assess cp_bb2 out
assess ideal_gas out

The object calc_Tp is a simple interpreter in temperature and pressure. Its body could

contain any function in temperature and pressure. Within the calc_Tp object one can use all the

arithmetic operations (+, -, *, /, ^), functions (acos, abs, asin, atan, cos, exp, log10, log, sqrt, tan) and
the constant R = 8.31441. Thus, calc_Tp can be used when your needs cannot be handled by

special cases included in the library (see Table 3.3). Compare
assess complex_tp out
assess calc_tp out

The output is the same, however the calc_Tp object does real interpreting. Note though, that

because of interpreting the calc_Tp object takes more RAM, its performance is slower by several

times and the first and second derivatives, listed in Eq. (2.9), are taken numerically.

The last object compound_Tp is to deal with compound functions. It contains a vector of

func_Tp objects. The T,p-plane is supposed to be covered by a grid of rectangles, described by a

set of T,p-values as follows

T1,p1 T1,p2 ... T1,pn
T2,p1 T2,p2 ... T2,pn
...
Tm,p1 Tm,p2 ... Tm,pn

and G(T, p) within each rectangle is assumed to be represented by a simple func_Tp object. The

continuity of the whole compound function and its derivatives is up to the developer of the
compound G(T, p) function.

Run
assess compound_tp out

and compare the output with
assess complex_tp out

Finally, it should be mentioned that any func_Tp object could have an id attribute. Its value

should be unique for the func_Tp namespace. Then this object can be referenced from other object

as follows
<func_Tp class=func_Tp IDREF=func_Tp_id></func_Tp>

where the func_Tp_id is supposed to be defined previously. See file ex2.mod as an example.

3.2.5. Object species (tdlib/ex/phase/pp/)

As was mentioned above, basically a species should be a combination of two objects:

formula and func_Tp. However, it is helpful to allow the use of Eq. (2.18) when the total Gibbs

energy of the species is partitioned to the two parts, the Gibbs energy of some reaction (Eqs 2.19 and

2.20) and the sum of the Gibbs energies (Eq. 2.21). Let me explain this with the next example, related
to the point phases. Note that the same concerns the species in the solution.

There are five stoichiometric compounds in the Cu-Y system, Cu6Y, Cu4Y, Cu2Y7, Cu2Y, and

CuY. Hence, on order to describe the equilibria, one has to employ seven species for the seven point
phases, five intermetallic compounds and two pure components, and accordingly seven Gibbs

energies G(T, p)i (i lists all seven compounds). A typical thermodynamic ambiguity is that we cannot
determine the absolute Gibbs energies, although this has no implications for computing the

 29

equilibrium composition. As a result, two of seven Gibbs energies can be equated to arbitrary
functions (their choices depend on the accepted reference states in the project), and this does not

change equilibria computations.
Eqs (2.18) to (2.21) allows us to introduce five reactions

 p Cu + q Y = CupYq

(the formation of intermetallic compounds from pure components). The five Gibbs energies of
reactions are defined unambiguously because they correspond to change in the Gibbs energy, and,

actually, all equilibria computations depend just on these reaction Gibbs energies. Still, it is useful to
think about seven Gibbs energies (one species - one Gibbs energy). This simplifies many formulas in

chemical thermodynamics. Then we can express all seven Gibbs energies by means of two arbitrary
functions (the Gibbs energies of pure components, see Gref in Eqs 2.18 to 2.21) and five unambiguous

reaction Gibbs energies (Gmix in Eqs 2.18 to 2.21). This would simplify significantly support of the
database in the future. If we need to change the current reference state for any reason, then we have
to change just the two Gibbs energies of pure components. The Gibbs energies of intermetallic

compounds will then change instantly because of Eqs (2.18) to (2.21).
Another reason for employing Eq. (2.18) is tied with inverse tasks. Here we need to put

unknowns in the Gibbs energies of intermetallic compounds. Much better choice is declaring
unknowns within the reactions Gibbs energies (Eq. 2.19 and 2.20) because this usually leads to a

more stable numerical task.
On the other hand, Eq. (2.18) is general. A user can always equate Gref to zero and, in the

example above, define the seven Gibbs energies independently. Certainly, he/she must not forget

about the thermodynamics laws, but this is another question.
In order to describe the Eq. (2.18), one can put into the species object the SGML element

ref_plane. The func_Tp object before the ref_plane element will mean Gmix, and the

ref_plane by itself - Gref. By default, when the ref_plane element is absent, it is assumed that

Gref = 0.

The file species.mod in the directory tdlib/ex/phase/pp demonstrates the syntax. The file
out2.mod shows how to retrieve the full property and the parts, ref and mix. The command
assess species out2

will show you how it works.

The element ref_plane, if present, contains a list of pairs of numbers and species. Note

that this is a recursive definition, because the species within the ref_plane can have their own

reference planes. The recursion is allowed and supported by the library.

If on input all the numbers before species are equal to zero or they are absent, then during the
input the formation reaction of the current species from the components in ref_plane will be

equated automatically. Otherwise, the correctness of the reaction is not checked. The example is in
the file k2so4.mod. In order to see it, it is necessary to put the –m flag to the assess. For example,
assess –m k2so4

With this flag the assess rewrite the model file and you can see how it has interpreted the input.

Note, that first while making output the assess writes the globals object. It will be discussed

later on.
The species could have an id attribute (see species.mod). In this case it can be referenced from

the other objects, for example
<species IDREF=Y2O3></species>

This will work if and only if the species with the id equal to Y2O3 was already defined earlier.

The namespaces for the species and phases are different. However, because the point phase is,
after all, a species, the TDLIB features the automatic promotion of species to the point phase. This

means, that if there is a reference to the phase
<phase IDREF=ph1></phase>

 30

and the ph1 is not found among the defined phases, then TDLIB will search the ph1 in the species

namespace, and if it is found there, the point phase will be formed automatically from the species with
id equal to the given one.

3.2.6. Object SimpleSolution (tdlib/ex/phase/simple/)

In general, the Gibbs energy for the simple solution models (for example, non-ordering

solutions) can be represented as a sum over some functions in temperature, pressure and mole
fractions

 Gm(T, p, x1, ..., xC) = Σk fk(T, p, x1, ..., xC) (3.1)

Typically, the functions on the right side of Eq. (3.1) are classified as Gref (Eq. 2.6), Gideal (Eq. 2.8),
and Gexcess and Eq. (3.1) usually looks like as follows

 Gm(T, p, x1, ..., xC) = Σi xi G
*

m,i(T, p) + Σi xi RT ln xi + Σk gint,k (3.2)

where i = 1, ..., C, (C ≥ 2) and three terms correspond to Gref, Gideal, and Gexcess accordingly.
In the current release, Eq. (3.1) and not Eq. (3.2) was chosen as the ground to model the Gibbs

energy without the internal parameters, because it gives more freedom and flexibility. As a result, the
object SimpleSolution is considered as a container for polymorphous objects in category

FuncTpx which are used to model fk in Eq. (3.1). Thus, if you would like to create any new phase

models without internal parameters, all you need in TDLIB is to program a new object in the
category FuncTpx. In my understanding, Eq. (3.1) should handle all the cases here.

The file ex1.mod in the directory tdlib/ex/phase/simple/ shows the empty

SimpleSolution object for the fictitious binary A-B system, and the file out.mod describe the

output of various properties. The command
assess ex1 out

will show that as expected the empty SimpleSolution object produces zeros for all the

properties.
Now let us see, how to define the function in temperature, pressure and mole fractions within

the SimpleSolution object. Note that even if the example will deal with the two-component

solution, there is almost no software limits on a number of components and a number of FuncTpx

objects you could put within SimpleSolution object. You are just limited by the size of available

RAM and the processor speed.

3.2.7. Objects in category FuncTpx (tdlib/ex/phase/simple)

In order to represent Gref TDLIB contains the object Reference. It allows us to work with

some more general functions than Eq. (2.6). Let us discuss this with an example of the two-binary

solution. Typically Gref here would be represented as

 Gref = xA G*
m,A(T, p) + xB G*

m,B(T, p) (3.3)

However, we could express xA = 1 - xB and receive

 Gref = G*
m,A(T, p) + xB ∆G*(T, p) (3.4)

or alternatively xB = 1 – xA

 Gref = G*
m,B(T, p) + xA ∆G*’(T, p) (3.5)

While Eqs (3.3) to (3.5) are equivalent in the mathematical sense, in the inverse problems when

functions in temperature contain unknowns there might be a difference in numerical stability of the
optimization problem. Here the transformation from Eq. (3.3) to (3.4) and (3.5) allows us to

reparameterize the goal function, and if this leads to the less correlated unknowns, this would

 31

improve the convergence. Also, in my view, the Eq. (3.4) or (3.5) more suitable to describe the solid
solutions kind of ABP+z where the end members of the binary solution are ABP and ABP+1.

As a result, the Reference object represents a general function as follows

 Gref = Go(T, p) + Σi xi Gi(T, p) (3.6)

where the sum is over an arbitrary set of the mole fractions of components. The files ref1.mod to

ref3.mod represent Eqs (3.3) to (3.5) accordingly, and the next commands will show that the

results are identical
assess ref1 out
assess ref2 out
assess ref3 out

It is possible to put several Reference objects. It is useful, for example, when it is necessary

to define the ideal gas phase. The file ref4.mod shows how it could be done.

Formally speaking, the Reference object contains pairs of func_x and species

elements. The use of species allows us to model the Gibbs energy of pure component of the solution

with the use of Eqs (2.18) to (2.21) (see also Section 3.2.5).
The IdealMixing object models Eq. (2.8). If this object is left empty on input (see file

ideal1.mod) it represents exactly Eq. (2.8). Again you can obtain the numerical properties with

the command
assess ideal1 out

If you unsure how TDLIB will understand the input, it is always possible to use –m flag at the

command line, for example
assess –m ideal1

and all the objects will be shown in a form which could be called a “canonical”.

The IdealMixing object also allows us to work with some more general function than Eq.

(2.8), namely with

 Gideal = Σi bi xi RT ln xi (3.7)

where bi are arbitrary numbers and the sum can be taken over arbitrary subset of the components.

The file ideal2.mod demonstrates this possibility.

There is a numerical problem associated with Eqs (2.8) and (3.7) concerning chemical
potentials and partial entropies. The part in chemical potential associated with Eq. (3.7) is equal to

 µideal,i = bi RT ln xi (3.8)

and when the mole fraction is zero we have a negative infinity. What happens when zero or negative

values are substituted for xi in Eq. (3.8) depends on a compiler. Borland C++ up to 5.02 did not like
it. gcc in such a situation behaves in a more reasonable manner, for it uses “infinity” and “not-a-
number” values. Still, it is necessary to put in special efforts to handle this case in the library. The

current decision is to use an idea which I have found in Ref. [27], that is, to change ln(x) at values of
x less than eps to the next function

 f(x) = ln(eps) – 1.5 + (x/eps)(2 – 0.5 x/eps) (3.9)

The function above and its first derivative is continuous with the ln(x) and, at the same time,

leads to the reasonable values when x is zero or less than zero. The TDLIB behavior is controlled by
the two global parameters which are given below with their default values
<globals
 EpsForNegLog=1e-07
 NegativeLog=1>
</globals>

When NegativeLog is equal to one the use of Eq. (3.9) is allowed and then EpsForNegLog sets

the value of eps in Eq. (3.9). This simplifies the development of the thermodynamic algorithms

 32

because now it possible to freely use the zero and even negative values of mole fractions. However,
this decision has its backside, that is, if you need to compute the chemical potential of some

component when its mole fraction is very low by default the values obtained might not be accurate.
In order to see this effect, run the next commands in the directory

tdlib/ex/phase/simple
assess ideal1 outsmall
assess neglog ideal1 outsmall

In my own practice, I have encountered this backside few times when in order to proceed further I

needed to change the default values of EpsForNegLog. In the future, this has to be done in some

more intelligent way that would not require the human intervention.

Gexcess is expressed as the sum over interaction terms, gint,k, including binary, ternary and so on
interactions. The number of binary interaction terms is equal to the number of all the combinations
between two mole fractions, xi1 and xi2, the number of ternary interaction terms is equal to the

number of all the combinations among three mole fractions, xi1, xi2, and xi3, and so on.
The binary interaction term in the binary solution can be generally expressed as

 gAB = Σr ar(T, p) fr(xA, xB) (3.10)

where ar(T, p) is some function in temperature and pressure, sometimes referred to as the interaction
parameter, and fr(xA, xB) is some function in mole fractions, such that it is equal to zero for pure

components. In the binary solution xA + xB = 1, and there are many equivalent forms of Eq. (3.10) for
the same function fr(xA, xB). However, if we use Eq. (3.10) for the multicomponent solution directly,

these equivalent form become different because here xA + xB ≠ 1. Several projection formalism have
been introduced (see, for example, Ref [21]). The most famous are Kohler and Muggianu formalisms,

described as

 vi = xi/(xA + xB) (3.11)

 vi = xi + (1 – xA – xB)/2 (3.12)

accordingly, where i means A or B. In these equations one takes mole fractions xA and xB from the
multicomponent system, and obtains the mole fractions vA and vB that should be used in the next

equation

 gAB = (xAxB)/(vAvB).Σr ar(T, p) fr(vA, vB) (3.13)

Thus, Eq. (3.13) represents the binary interaction term in the general case for a multicomponent
solution. In the case of the binary solution Eq. (3.13) is equivalent to Eq. (3.10). There are several
choices for fr(xA, xB) (see, for example, Ref. [22]). The current release of TDLIB contains three

objects, RedlichKister, HochArpshofen, and Polynomial to describe the most popular

interactions. As for other polymorphous categories, a user, proficient in programming, can add new

objects. The general polynomial can be modeled with the Polynomial object as

 gAB= xAxB Σr ar(T, p) vA
rA vB

rB (3.14)

where the user can employ arbitrary number of terms with arbitrary powers. Note that this includes a

Borelius polynomial

 gAB= xAxB Σr ar(T, p) vA
R-r vB

r (3.15)

where r = 0, …, R, as a special case.
Redlich-Kister polynomial is expressed as

 gAB= xAxB Σr ar(T, p) (vA - vB)r (3.16)

where r = 0, …, R, and Hoch-Arpshofen [23] polynomial as

 gAB = (xAxB)/(vAvB).{Σr ar(T, p) (vA – vA
r) + Σq aq(T, p) (vB – vB

q)} (3.17)

 33

where r ⊂ (2, …, R), and q ⊂ (2, …, R). Hoch and Arpshofen employed just two members In Eq.
(3.17), so latter can be viewed as the generalization. Actually, one should not include all the members

in both sums over r and q in Eq. (3.17), because in this case some members may become linear
dependent.

For the direct tasks, computing the equilibrium composition, Eqs (3.14) to (3.17) are

equivalent, as one can transform them equivalently in each other. In the inverse task, this is not so.
Because the basis functions are different (and so is the set of unknowns), their behavior also differs.

The basis functions in the Redlich-Kister polynomial are close to the orthogonal ones, and this makes
the optimization task somewhat easier. On the other hand, the Hoch-Arpshofen polynomial allows us

to support the necessary topological behavior of the Gibbs energy more easily. The basis functions
here have a nice feature: each function xA – xA

r is concave in the closed interval [0, 1]. This means
that only the sign of ar(T, p) determines whether ar(T, p)(xA – xA

r) is convex or concave. If you add

to this feature a statement, that the sum of convex functions is also convex, then it gives some
additional power into the hand of the assessor.

The M-ary interaction term of C-component solution is defined as the interaction between M
from C components with their mole fractions expressed as xj, where the index j lists the mole

fractions in the given set of M components. However, only the general polynomial (Polynomial

object) allows us to easily generalize Eq. (3.10) to M-ary interaction term from the binary one. In this
case, Eq. (3.14) takes the next form

 gM-ary = (Πj xj) Σr ar(T, p) (Πj vj
nrj) (3.18)

The sum in Eq. (3.18) is over any possible products of vj. The projections formalisms for the M-ary

interaction term (Eqs 3.11 and 3.12) become

 vi = xi/(Σj xj) (3.19)

 vi = xi + (1 - Σj xj)/M (3.20)

accordingly.
All objects to represent interactions have a common attribute, formalism. The value of

formalism set the projection formalism to NoChange, Muggianu, Kohler. The NoChange

means vi = xi, as in the case when the order of interaction is equal to the number of components, M =
C. If the order of interaction is equal to the number of components of the solution than the formalism

on input is reset to NoChange because it takes less computational time. For RedlichKister

objects the values NoChange and Muggianu are equivalent. If you unsure, how TDLIB

understood your input, as was mentioned above, use –m flag on the command line and assess will

produce the output of the model.
The internal format of interaction objects mimics the mathematical expression, Eqs. (3.14) to

(3.17). Each item is represented by a pair of SGML elements, The first, func_x, serves as a text

label to show a power of the basis function, the second, which should be of the func_Tp category,

describes ar(T, p). The user should indicate the names of the components, the projection formalism,
and the items required. On input the order of the items can be in any order.

As in the case of func_Tp objects, the representation of the mathematical expression in the

format is done just to make the format self-descriptive, and this does not mean interpreting at run-
time. Eqs. (3.14) to (3.17) are hard-coded within the objects, hence, they have a good performance

and all the derivatives (Eq. 2.16) are programmed in the closed form.
The files rk1.mod, ha1.mod, ha1_.mod, and pol1.mod in the directory

tdlib/ex/phase/simple contains the different interaction objects which describe the same

mathematical function. However, because the type of the polynomial is different the numerical values
of the coefficients are different. The file outfrml.mod produces the Gibbs energy for these objects

under the different formalisms. If the sum of the two mole fractions, taking part in the interaction, is

 34

equal to one, than there is no difference between the objects under any formalism. If the sum of these
two mole fractions is not equal to one, than there is a difference. You can see it, if you type in the

next commands
assess rk1 outfrml
assess ha1 outfrml
assess ha1_ outfrml
assess pol1 outfrml

The files rk2.mod, ha2.mod, and pol2.mod demonstrate the same with a bit more

complicated polynomial. Run the next commands
assess rk2 outfrml
assess ha2 outfrml
assess pol2 outfrml

to view it.
The FuncTpx objects could have an id attribute. In this case it can be referenced from the

other objects, for example
<FuncTpx class=FuncTpx IDREF=id_value></FuncTpx>

Finally, the library supports the NullFuncTpx object, which models the interaction term

identically equal to zero. It is not very useful in thermodynamic applications, but it is helpful for

internal tasks of the TDLIB library.

3.2.8. Object CuOx_ordered_plane (tdlib/ex/phase/y247/)

The CuOx_ordered_plane object was designed to work with the Y2Ba4Cu7O14+w (Y247)

superconductor. Its structure is pretty similar to that of Y123 (see below) but the Y247 phase

experimentally was not found in the tetragonal form. This allowed us to speculate that, in this case,
the order parameter x is always equal to z/2, what corresponds to the case when the basal plane is in
the completely ordered state. As a result, the Gibbs energy of the Y247 does not contain an internal

parameter, and it can be expressed as

 ∆oxG(T, w) = g1(T) + w g2(T) + w(1 - w)Σiai(T)(1 - w)i +

 2 RT[w ln w + (1 - w) ln (1 - w)] (3.21)

In the previous version of TDLIB this can not be handled by the polynomial model, and in
order to work with Eq. (3.21), the CuOx_ordered_plane object was programmed. In TDLIB’00

Eq. (3.21) can be expressed by means of SimpleSolution, and thus the

CuOx_ordered_plane object can be considered as obsolete. It is left in the library just because it

was already programmed earlier.

The files plane.mod and simple.mod in the directory tdlib/ex/phase/y247/

displays how to represent Eq. (3.21) by means of CuOx_ordered_plane and

SimpleSolution objects accordingly. The next commands
assess plane outtd –o p
assess simple outtd –o s

will compute the various thermodynamic properties for the two objects to the two files, p.td and

s.td. They should be absolutely identical, what can be checked by means of
diff p.td s.td

3.2.9. Object NumericalDerivatives (tdlib/ex/phase/y247/)

While the solution model is programmed there are a lot of possibilities for mistakes. In order to
simplify the debugging, the NumericalDerivatives object computes all the derivatives of the

phase model numerically. The file num.mod in the directory tdlib/ex/phase/y247/ shows

 35

the very simple syntax, and the file outnum.mod compares the hard-programmed and numerical

derivatives. Run
assess plane num outnum
assess simple num outnum

to see that the derivatives for the CuOx_ordered_plane and SimpleSolution objects was

programmed correctly.

3.3. Describing phases. II. Solution models with the internal parameters in the
PHASE library (tdlib/ex/phase)

For a solution model with internal parameters, TDLIB allows us to partition Eq. (2.10) as

follows

 Gm(T, p, x) = Gref{T, p, x} + Gmix{T, p, x, y(T, p, x)} (3.22)

where the meaining of Gref and Gmix is changed a bit as compared with Eq. (2.5) for the simple
solution models. Here Gref denotes the part of the Gibbs energy, which does not depend on internal
parameters, and Gmix describes the part with internal parameters. Such a division permits us to

optimize computations for the whole model. Also in Eq. (3.22) and below the subscript eq at internal
parameters is omitted to simplify the equations.

Then there are the two cases, with one independent internal parameter and many independent
internal parameters accordingly. Let us start with the former. We have

 Gm(T, p, x) = Gref{T, p, x} + Gmix{T, p, x, y(T, p, x)} (3.23)

where y is determined by solving the non-linear equation

 F(y; T, p, x) = 0 (3.24)

The first derivatives of the Gibbs energy in the form of Eq. (3.23) can be found as

 ∂Gm/∂z = ∂Gref/∂z + ∂Gmix/∂z + (∂Gmix/∂y)(∂y/∂z) (3.25)

where z is T, p, or xi. The derivative for the internal parameter can be determined by means of the rule
for the implicit derivatives

 ∂y/∂z = - (∂F/∂z)/(∂F/∂y) (3.26)

Thus, according to Eqs (2.9) and (2.16), Eqs (3.25) and (3.26) allows us to determine H, S, V,
and chemical potentials for the solution model with one internal parameter given by Eq. (3.23). In

order to determine other properties we need second derivatives of the Gibbs energy. However,
because we already have the first derivatives, we could use them in order to numerically determine

the second derivatives. That is, we have for the heat capacity

 Cp = (∂Hm/∂T)num (3.27)

where the subscript num shows that this derivative is taken numerically. As a result, we have to find

numerically the first derivative of the property, computed from the Gibbs energy according to (3.25)
and (3.26). This improves the precision if as compared with the numerical determination of the

second derivative of the Gibbs energy directly. The step here is controlled by the global option
<globals
 IntVarStep=6.05545e-05>
</globals>

The similar equations can be written for thermal coefficients

 ∂2Gm/(∂T∂p) = (∂Vm/∂T)num (3.28)

 ∂2Gm/∂p2 = (∂Vm/∂p)num (3.29)

 36

and for derivatives which are necessary to compute the partial enthalpies, entropies, and volumes, for
example

 ∂2Gm/(∂T∂xi) = -(∂Sm/∂xi)num (3.30)

The partial heat capacities and partial thermal coefficients for the solution models with internal
parameters are not supported in the current release of TDLIB, because these are the third derivatives

of the Gibbs energy and, at the same time, the number of cases when they are needed is very low.
Conventionally, Eq. (3.24) to find the internal parameter is obtained as follows

 ∂Gmix/∂y = F(y; T, p, x) = 0 (3.31)

Then the equations above can be simplified. The first derivatives of the Gibbs energy (Eq. 3.25)

becomes

 ∂Gm/∂z = ∂Gref/∂z + ∂Gmix/∂z (3.32)

where z is T, p, or xi. This simplifies the computation of the H, S, V, and chemical potentials and

hence allows us to change Eqs. (3.27) to (3.30) for the second derivatives of the Gibbs energy to the
next ones

 Cp = ∂Href/∂T + ∂Hmix/∂T + (∂Hmix/∂y)(∂y/∂T) (3.33)

 ∂Vm/∂T = ∂Vref/∂T + ∂Vmix/∂T + (∂Vmix/∂y)(∂y/∂T) (3.34)

 ∂Vm/∂p = ∂Vref/∂p + ∂Vmix/∂p + (∂Vmix/∂y)(∂y/∂p) (3.35)

 ∂Sm/∂xi = ∂Sref/∂xi + ∂Smix/∂xi + (∂Smix/∂y)(∂y/∂xi) (3.36)

When we have several independent internal parameters (Eq. 3.22), we have set of equation to

determine them

 F(y; T, p, x) = 0 (3.37)

where F is a vector of equations and y is a vector of unknown parameters. Then Eq (3.25) is to be

changed to

 ∂Gm/∂z = ∂Gref/∂z + ∂Gmix/∂z + Σi (∂Gmix/∂yi)(∂yi/∂z) (3.38)

Here, in order to determine the set of the derivatives ∂yi/∂z one has to solve a linear system of
equations analogous to Eq. (2.14).

If the equations to determine unknown parameters are obtained by equating the derivatives of

Gmix over yi to zero

 ∂Gmix/∂yi = Fi(y; T, p, x) = 0 (3.39)

then, as in the case with one internal parameter, Eq. (3.38) simplifies to Eq. (3.32), and Eqs (3.27) to
(3.30) to determine the second derivatives of the Gibbs energy will become

 Cp = ∂Href/∂T + ∂Hmix/∂T + Σi (∂Hmix/∂yi)(∂yi/∂T) (3.40)

 ∂Vm/∂T = ∂Vref/∂T + ∂Vmix/∂T + Σi (∂Vmix/∂yi)(∂yi/∂T) (3.41)

 ∂Vm/∂p = ∂Vref/∂p + ∂Vmix/∂p + Σi (∂Vmix/∂yi)(∂yi/∂p) (3.42)

 ∂Sm/∂xj = ∂Sref/∂xi + ∂Smix/∂xi + Σi (∂Smix/∂yi)(∂yi/∂xj) (3.43)

TDLIB supports both cases to determine internal parameters, the conventional (Eqs 3.31 and

3.39), and general, when equations to determine unknown parameters (Eqs 3.24 and 3.27) are

considered to be arbitrary and not to be equal to ∂Gmix/∂yi. The latter seems to be unusual, but in my
view, it still might be usefull.

 37

Phases with the internal parameters might produce the debugging information, because in order
to compute the Gibbs energy and the derivatives one first has to solve Eqs (3.24) and (3.27)

numericaly. This feature can be turned on for a particular phase by means of the attribute debug in

the XML element for this phase. However, if you would like to turn it on for all the phases at once,
set the global option DebugPhase to 1, as follows
<globals
 DebugPhase=1>
</globals>

3.3.1. Object CuOx_plane (tdlib/ex/phase/y123)

The CuOx_plane object represents a special case of the lattice model developed by Degterov

and Voronin to describe the Gibbs energy of the YBa2Cu3O6+z (Y123) phase [11]. It can also be

employed for other superconductors similar to Y123, that is, containing the basal plane CuO.
According to the model, the Gibbs energy of the reaction

 0.5Y2O3 + 2BaO + 3CuO + (0.5z-0.25)O2= YBa2Cu3O6+z (3.44)

can be expressed as follows

 ∆oxG(T, z, x) = g1(T, p) + g2(T, p)z + z(1 - z)Σiai(T, p)(1 - z)i-1

 + (c2 - x2)Σibi(T, p)(1 - z)i-1 (3.45)

 + RT[(c + x) ln (c + x) + (c - x) ln (c - x) + (1 - c + x) ln (1 - c + x)

 + (1 - c - x) ln (1 - c - x) + z ln z + (1 - z) ln (1 - z)]

where z is the stoichiometric index (0 ≤ z ≤ 1), c is short for z/2, x is the order parameter (0 ≤ x ≤
z/2), gi(T, p), ai(T, p) and bi(T, p) are some functions in temperature and pressure. The notation in

Eq. (3.44) is the same as in Ref. [11], and it differs a little bit from the accepted in the present
document. Hope that this will not bring forth a lot of confusion.

The order parameter, x, is the internal parameter of the model. That is, for all the
thermodynamic functions at equilibrium, we have just three independent variables, the temperature T,

the pressure p, and the index z, because this phase is a binary solution. The value of x at any given T,
p and z can be determined by minimizing Eq. (3.45) over x. This means that according to the notation
above this model falls to the conventional solution models with one internal parameter (Eqs 3.31 to

3.36). Then substituting the equilibrium value of x back to Eq. (3.45) we receive the equilibrium
Gibbs energy

 ∆oxG(T, p, z) = ∆oxG{T, p, z, xeq(T, p, z)} (3.46)

This means, that even though we have Eq. (3.12) in the closed form, the computation of the

equilibrium Gibbs energy and other thermodynamic properties is possible by numerical methods only.
More details, including the computation of derivatives (Eqs. 2.9 to 2.16), are given in Ref. [11].

The XML representation of the CuOx_plane object, shown in the file y123.mod in the

directory tdlib/ex/phase/y123, imitates Eqs (3.22) and (3.45). Gref in Eq. (3.22) is presented

by the Reference object and then goes Gmix modeled by Eq. (3.45). As in the case of interaction

objects, the imitation here is achieved by modeling each term in Eq. (3.45) by means of pairs of XML
elements, func_x, a text label to describe the basis function in Eq. (3.45), and func_Tp to

represent the function in temperature and pressure. The user can put in any number of terms with

different types of func_Tp objects. On input, terms can follow in any order.

File t.out.mod allows us to print various properties of the CuOx_plane object, for

example the command
assess y123 alg t.out –o prop

 38

will write them to the file prop.t. Files x1.out.mod to x3.out.mod print smaller number of

values that could be fitted in the screen. The next commands will compare the derivatives of the

Gibbs energy computed by means of Eqs (3.32) to (3.36) with those computed numerically by means
of NumericalDerivatives object.
assess y123 alg x1.out
assess y123 algnum x1.out
assess y123 alg x2.out
assess y123 algnum x2.out
assess y123 alg x2.out
assess y123 algnum x2.out

There should be no difference except for the partial entropies and Gibbs energies when mole fraction
is equal to zero and one. The explanation for this difference is tied with Eq. (3.9) employed by

TDLIB by default.

3.3.2. Objects AssociatedSolution and associated_solution (tdlib/ex/phase/ass)

The objects AssociatedSolution and associated_solution represent the

generalized polynomial association solution model. There are some problems with both of them. The
former is the new implementation, and the latter is left from the TDLIB’99. The
AssociatedSolution object is more general but however it is not 100% numerically stable if

the number of associates is more than one. The associated_solution object employs the VCS

subroutine, which code is published in [7], as the computational engine. It is much more numerically

stable but it is limited in functionality and it is distributed in the binary form of access only because

Prof. W.R. Smith does not want me to distribute the code of the VCS subroutine.

I will start with some underlying philosophy, and then will give the examples and the more
detailed description of the objects.

The Gibbs energy of the associated solution is conventionally considered to have a form of Eq.

(3.2). The difference is that the rank of the formula matrix (Eq. 2.1), C, is smaller then number of
species, N, some of which in this case are referred to as associates. This means that the chemical

reactions are taking place among species. The number of linear independent chemical reactions is
given by the next equation [7]

 R = N – C (3.47)

Let us denote the mole fractions of species as yi, i = 1, ..., N. Then the original molar Gibbs energy of
the association solution can be written as

 Gm(T, p, y1, …, yN) (3.48)

At equilibrium, we can describe the molar Gibbs energy of the solution by means of C

independent components. Let us denote the mole fractions of components as xk, k = 1, ..., C. Hence,
we can consider the solution either as containing C independent components, or as containing N

species. Because this is the same solution, we can equate these two Gibbs energies

 Gm(T, p, x1, …, xC) = n Gm(T, p, y1,eq, …, yN,eq) (3.49)

However, in the general case, one mole of C components is different from one mole of N species, so

we should multiply Eq. (3.48) by the total number of moles of the species, n = Σi ni, which are
situated within the one mole of the solution formed by C components. Sometimes, it is more

convenient to switch from the mole fractions of species, yi, to the numbers of moles, ni = n yi, and as
a result we can write that

 Gm(T, p, x1, …, xC) = G(T, p, n1,eq, …, nN,eq) (3.50)

 39

The equilibrium numbers of moles in Eq. (3.50) can be found from the equilibrium criterion
(see, for example, Ref. [7]), which lead us to the system of N non-linear equations as follows

 xk = Σi aki ni (3.51)

 Σi νij µi = 0 (3.52)

The first C equations (Eq. 3.51, k = 1, ..., C) show the material balance between the independent

components and the species. aki is the element of the formula matrix in which the species are
composed from the independent components. The last R equations (Eq. 3.52, j = 1, ..., R) state that

at equilibrium the change in chemical potentials should be zero for each chemical reactions. νij is the
element of the stoichiometric matrix, and it shows the stoichiometric number of the i-th species in the
j-th chemical reaction.

Again, Eqs (3.50) - (3.52) should be considered as algorithm to compute the Gibbs energy of
the association solution. First, for given T, p, x1, …, xC one has to solve the system of equations

(3.51) - (3.52) for ni,eq, taking into account that ni ≥ 0, and then it is necessary to substitute the values
found into Eq. (3.50).

We have the special case of the ideal association solution when the excess Gibbs energy is equal
to zero

 Gexcess = 0 (3.53)

in other words, when the chemical potentials of the species can be expressed as

 µi = µi
o + RT ln yi (3.54)

This case has very good mathematical properties because here the Gibbs energies (3.48) and (3.50)
are convex, and one can prove that there is one and only one solution of the system of equations

(3.51) - (3.52) within the admissible range ni ≥ 0. In addition, there are good algorithms available

which can solve the system for all the possible cases with the automatic generation of the initial
guess. As for me, for this case I really like the VCS subroutine from the Ref. [7].

In the general case of the polynomial association solution the situation is much worse. It is
always possible to solve the system of equations (3.51) - (3.52) for a particular case, however I do

not know the general algorithm, which could solve this system in any case with automatic generation
of the initial guess with 100% guarantee of the success. One of the main problems here is that in the
general case the system of equations (3.51) - (3.52) might have several solutions, each of them

corresponding the local minimum within the admissible range ni ≥ 0, and, as a result, in this case it is
necessary to switch to the problem of finding the global minimum.

At this point, let us ask themselves why it is necessary to solve the system (3.51) - (3.52). The
typical answer is that we need the equilibrium composition of associates. Then, let us ask the next
question, whether the associates have physical meaning, that is, what are the proves, that they exist in

the solution. Here, the answers vary. Some researches are confident that the associates do exist and
they even try to determine their chemical composition by processing the experimental values under

the either ideal of regular association model. Others just say that the association model takes into
account ordering, and they are not that sure that the particular set of associates chosen to fit the

experimental values has real prototypes in the solution.
Personally, I share rather the extreme view that the introduced associates are just mathematical

tricks to develop more suitable model for multicomponent solution. Well, associates do have some

relationship with the real interactions within the solution, but I would say that the associates just
some shadows of real interactions.

From the viewpoint of mathematical description, it is roughly possible to compare the
associated solution model with the splines. The idea is about the same - to divide the area to the small

pieces in order to decrease the power of the polynomial, and along this way, the associates play the
role of the spline nodes. If we accept this point of view, then we do not have to compute the

 40

equilibrium composition of associates at all. If I say that associates do not have the physical meaning,
I do not have to interpret yi,eq as equilibrium mole fractions, even though this was the initial way of

thinking.
As a result, the idea behind the new generalization of the polynomial associated solution model

is to modify the original system of equations (3.51) - (3.52) in order to simplify the determination of
its roots, that is, to change Eq. (3.52) to the next one

 Σi νij µi
id = 0 (3.55)

where the chemical potential is assumed to have a form of Eq. (3.54). Hence, the values of yi,eq are
found as if the solution would be the ideal associated one. As was mentioned above, this task can be

considered as good and one can expect no numerical problems here.
Once again, in this case the associates are not considered as meaningful physical entities but

rather a mathematical notation, and their mole fractions, yi,eq, found as the solution of the system of

equation (3.51) and (3.55), are not considered as equilibrium ones. Now this is just a mathematical
trick to develop a spline-like model. The background idea here is to change Alan Oates phrase “Let

us put more physics to the CALPHAD models” to the “Let us put more mathematics to the
CALPHAD models”.

In order to make it possible to elaborate this idea, TDLIB should support the two
implementations of the association model, the conventional one based on the system of equations
(3.51) and (3.52) and the new one, based on the system of equations (3.51) and (3.55).

As was mentioned above, the associated_solution object was taken from TDLIB’99.

It relies just on the VCS subroutine, and as such, it can handle only the new model. Let us discuss

determining the derivatives in this case. It is possible to derive the expressions for the first derivatives
of the molar Gibbs energy (3.50) as follows (see Eqs 2.11 and 3.38).

 (∂Gm/∂T)p,x = (∂G/∂T)p,x,n + Σi µi (∂ni/∂T)p,x (3.56)

 (∂Gm/∂p)T,x = (∂G/∂p)T,x,n + Σi µi (∂ni/∂p)T,x (3.57)

 (∂Gm/∂xk)T,p,x(l≠k) = (∂G/xk)T,p,x(l≠k),n + Σi µi (∂ni/∂xk)T,p,x(l≠k) (3.58)

where (∂ni/∂T)p,x, (∂ni/∂p)T,x, and (∂ni/∂xk)T,p,x(l≠k) can be found as a solution of the linear systems of
equations (3.59) - (3.60), (3.61) - (3.62) and (3.63) - (3.65) accordingly (see Eq. 2.14)

 Σi aki (∂ni/∂T) = 0 (3.59)

 Σi (νij/ni - ∆νj/n)(∂ni/∂T) = {Σi νij(Si
o - RT ln yi)}/(RT) (3.60)

 Σi aki (∂ni/∂p) = 0 (3.61)

 Σi (νij/ni - ∆νj/n)(∂ni/∂p) = -(Σi νij Vi
o)/(RT) (3.62)

 Σi aki (∂ni/∂xl) = 1 (k = l) (3.63)

 Σi aki (∂ni/∂xl) = 0 (k ≠ l) (3.64)

 Σi (νij/ni - ∆νj/n)(∂ni/∂xk) = 0 (3.65)

The second derivatives of the Gibbs energy can be found numerically (see Eqs. 3.27 – 3.30).

It is useful to extract from the chemical potential of the species the part tied with the
independent components as follows

 µi = Σk aki G
*

m,k(T, p) + ∆µi (3.66)

As a result the Gibbs energy of the associated solution can be written as

 G(T, p, n1, …, nN) = Σi µi ni = Σk xk G
*

m,k(T, p) + Σi ∆µi ni (3.67)

 41

The first part corresponds to the Gref in Eq. (3.22) and the second to Gmix. The format for the
associated_solution object follows Eq. (3.67) and (3.22) when the Reference object

models the first part and the SimpleSolution object surrounded by the internal_solution

tags – the second one. The examples are in the tdlib/ex/phase/ass directory.

The AssociatedSolution object is a more general replacement for the

associated_solution object. First, with the difference with all the previous TDLIB objects the

XML element AssociatedSolution is tied with several background C++ classes. The idea is

that at the beginning the object is handled by the loader that determines the most appropriate

numerical engine to use and gives the control to it. The two circumstances are taken into account in
the present release: the number of independent reactions and the value of the equilibrated

attribute. The latter controls the use of either the conventional model (Eqs. 3.51 and 3.52, if equal to
one) or the new model (Eqs. 3.51 and 3.55, if equal to zero). For the ideal association solution the

results should not depend on the value of this attribute. The number of independent reactions is
determined by analyzing the formula matrix. If it is equal to one then the employed solver works very
well. The only problem here might be the case when equilibrated=1 and there are several local

minima. Then which minimum will be found depends on chance. The solver for the case with several
independent reactions has not been worked out to the final stage yet. You have to expect to

encounter the case when the convergence will not be achieved.
The second generalization is the opportunity to use the SimpleSolution object both for

the Gref and Gmix in Eq. (3.22) and (3.67). This gives the possibility to simultaneously employ

interaction terms based on the internal mole fractions, yi, for the species in the internal solution and on
the mole fractions of the independent components, xi. It means a great deal of flexibility within the

same implementation.
The third difference is tied with using the chemical variables as the internal ones. In this case

the Eq. (3.51) is solved explicitly as follows (see Ref. [7] for details)

 ni = ni,o + Σj νij ξj (3.68)

where we have R independent chemical variables ξj as a replacement for the N linear dependent

number of moles of the species in the internal solution. It simplifies both the determining the solution
of Eq. (3.52) and the derivatives similar to Eqs. (3.56) to (3.58).

The behavior of all the AssociatedSolution objects is controlled by a few global options,

listed below.
<globals
 AssFactr=1000
 AssM=10
 AssPgtol=1.49012e-08
 AssTolerance=2.22045e-14>
</globals>

The first three of them set the parameters for the subroutine LBFGSB employed as the
numerical engine within this object in the case when the number of independent reaction is more than

one. There description can be found within the file tdlib/lib/toms/lbfgsb.f. The

AssTolerance option controls the minimum length of the admissible range for the chemical

variable. If its length is less than AssTolerance, than this chemical variable is considered to be

fixed.
Finally, it should be mentioned that there is some sense to use associates ApBq in the form

Ap/(p+q)Bq/(p+q) even this is not required by TDLIB. Some arguments can be found elsewhere in Ref.
[25, 26].

In the directory tdlib/ex/phase/ass there are files demonstrating

AssociatedSolution and associated_solution objects. The ideal.mod describes the

simple ideal association solution with one associated complex, the interactions are added in the

 42

reg.mod. The reg2.mod defines the regular association solution with two associates. The more

sophisticated case is in the file bise.mod. It describes the ideal associated gas in the Bi-Se vapors.

The files with the suffix old implement the analogous cases by means of the

associated_solution object. The files from x.out.mod to x3.out.mod define the output

of different properties.

The commands as follows
assess reg alg x1.out
assess reg algnum x1.out

will produce the output of the properties computed by the object itself and by numerical

differentiation accordingly. You could see that the associated_solution object is working

pretty good (it does not support partial enthalpies and entropies though) as well as the
AssociatedSolution object in the case of a single independent chemical reaction. When the

number of chemical reactions is more than one (files reg2.mod and bise.mod), than the

AssociatedSolution object gives less reasonable results. First, there are some problems with

convergence, second, there is a little bug in derivatives to compute the chemical potentials. It is
necessary to put in it some more efforts.

In the directory tdlib/ex/phase/ass/compare there are files to compare the

conventional and new association models. In the file ass.mod there is a case with one associated

complex when on the right side there is a positive interaction. This is sometimes useful in order in

order to deal with the systems when there is a strong negative interaction in the liquid and at the same
time there is a miscibility gap on either side of the associated complex. The next commands
assess ass out –v ini –o t
gnuplot t.g –
gnuplot t.int -

will plot the molar Gibbs energy with the chemical potentials and the internal mole fractions for both

models. Then it is possible to increase the value of the parameter mis in the file ini.par and to

see what happens. Note that the internal mole fractions for the new model do not depend on the value

of the interaction parameter even though the Gibbs energy and chemical potentials do. When mis is

greater than 100000 than there should be irregular behavior in both graphs for the conventional
model. The reason is that here there are two solutions within the admissible range and the

AssociatedSolution object takes either from these two possible solutions by chance. There is

no such a problem for the new model because for it there is only one solution in the admissible range

for all the possible values of the model parameters.

3.4. Describing phase equilibria. Objects in the TD_ALGO library

The main goal of the TD_ALGO library is to support the framework in order to develop

thermodynamic algorithms. As such, there is a category algorithm in which a user can add new

objects to implement new algorithms. The objects from the algorithm category communicate with

the upper objects by means of the compute object, which is considered to be an intermediary layer

with the goal to adjust the flow of the information between the upper object and the algorithm.

The algorithm could have its own state, and in the inverse problem when the optimizer

changes the values of unknown parameters, it is necessary to disclose this to all the algorithms. In

order to make it possible, in the current release of TDLIB all the algorithms are required to have the
attribute id - anonymous algorithms are forbidden. All the algorithms could also have the attribute

debug. If it is equal to 1, then the algorithm might produce some information about its work. In

order to turn on debugging at once for all the algorithms, set the value of DebugAlgorithm in the

globals object to 1.

 43

Another polymorphous category introduced in the TD_ALGO library is output. It is

designed to describe the output in the abstract form of the two-dimensional array of double values

when each column of this array is supposed to have a textual name.
One of the purposes of algorithms is to produce output. The overall relationship between the

objects in this case is as follows. The OutputFile object contains a vector of ComputeOutput

objects from the output category. Each ComputeOutput object contains a vector of compute

objects, which in turn contain the objects from the algorithm category.

Let us see first, how it works with the example of the dummy PassThrough algorithm. Then

the others, more meaningful algorithms, PhaseProperty, PhaseEquilibrium and

reaction will be presented.

3.4.1. Object PassThrough (tdlib/ex/algo)

As was mentioned earlier, the algorithm is considered to be a black box that takes a set of input

values, x and after the processing produces a set of output values, y. Each value in both input and
output sets has a textual name by which it can be accessed by the upper object.

The PassThrough is a dummy algorithm that just passes the input values to the output

without any treatment. It can take any name on input and then it forms the value with the same name

in the output set.
The file pass1.mod in the directory tdlib/ex/algo demonstrate the simplest use of the

PassThrough object. The compute object sets two input values within the PassThrough

object and then just retrieves them. The file pass2.mod shows how to organize a loop within the

ComputeOutput object, and finally the file pass3.mod demonstrate the conversion of the output

values obtained by the algorithm by means of the convert object. Run
assess pass1
assess pass2
assess pass3

to see the results.

3.4.2. Object OutputFile

The OutputFile object is a simple container for the objects from the output category. It

takes two-dimensional arrays of values from each output object and prints them to the output file

with an extension specified by the attribute ext. There is an attribute format that controls the way,

how the values are printed. By default, format = file that means that OutputFile prints first

the names of the columns for the first output object followed by its two-dimensional array, then an

empty line, and after that repeats this for all the output objects that it contains. If format = axum

then all the columns with their names from all the output objects are printed side by side. If the

length of some column is less than the others the non-existent values will be substituted by the text
miss. Such a file can be easily imported to Axum for plotting. I would expect that other plotting

packages ate this format either.
The third option, format = gnuplot leads to the output file, which can be read directly by

Gnuplot to plot a two-dimensional graph. Here the OutputFile object implies some additional

information implicitly. The rules are as follows. All the output objects within the OutputFile

object are plotted in the same graph but each of them is processed independently. The first column of

the output object is treated as abscissa, all others as ordinates. The attribute ChangeXY in the

output object changes abscissa and ordinate between each other for this output object.

 44

3.4.3. Object convert

Sometimes it is necessary to transform the set of values. To this end, the XML element
convert has been developed. It implements an arbitrary transformation function in several

variables, f(x1, ..., xN), evaluated on the fly by means of interpreting. The element by itself is as
follows
<convert name=name> expression </convert>

where within the expression one can use all the arithmetic operations (+, -, *, /, ^), functions (acos,
abs, asin, atan, cos, exp, log10, log, sqrt, tan) and the names of values available in the current scope.

The scope depends on the place where the convert object resides. The attribute name sets the

name of the output value; by default it is empty. If a name of some xi contains parentheses and/or

comma, then it is necessary to surround it by the <str></str> tags.

3.4.4. Object ComputeOutput (tdlib/ex/algo)

This is the only object from the output category in the TD_ALGO library. Some others from

this category will appear in the VARCOMP library.
In its simplest form it is just a container for compute objects (see file pass1.mod). Here the

compute object on its own supplies all the information to the algorithm.

The alternative is to make a loop (see file pass2.mod). Here the start element sets a set of

values as well as their names. All these values will be available on input for the compute objects.

The finish element defines the stopping criteria. The allowable comparison operations are GE

(greater or equal), EQ (equal), and LE (less or equal). The step element defines the actions to

increment the values. Here the convert element can take all the names defined in the start

element and assign the result to any value.
In order to define the starting values and the stopping criteria, the start and finish

elements in the ComputeOutput object might also have a compute object. It allows us to

dynamically change the range in which values will be changed within the loop. It is important for
drawing phase diagrams when it is necessary first to compute non-variant points and then to connect

them between each other by mono-variant lines. The examples of these approaches can be found in
the files tdlib/ex/bacu/pd.out.mod and tdlib/ex/bise/pd.out.mod.

3.4.5. Object compute

The compute object helps communicate upper objects (in the current release, these are

ComputeOutput and residual) with the objects from the algorithm category. It takes on

input a set of values from the upper object and sets the required values within the algorithm

object. Along this way the compute object can translate names and convert the values to those

required by the algorithm object. Also, the compute object prepares the set of output values to

return to the upper object where it also could change the names of the values and make the

conversions required. For example, the next object
<compute>
 <algorithm class=algorithm IDREF=s11_L></algorithm>
 <input name=T> T </input>
 <input name=x2> x(L,Se) </input>
 <output> T </output>
</compute>

defines the communication with the s11_L algorithm. It says that on input the values of T and x2 of

the upper object should be set as the values of T and x(L,Se) of the algorithm accordingly. On

output it is necessary to obtain the resultant value of T with no changes.

 45

Formally, the body of the compute object should contain the object from the algorithm

category and then a list of XML elements input and output.

Each XML element input contains the value in the algorithm to be set. The XML

element input can have either name or value attribute. The attribute name defines the name of

the value from the upper object to be taken. The attribute value allows the user to set the value of

the algorithm to the given number. If the input element does not have neither attribute name nor

value, it expects the convert object in the body, for example,
<input><convert>t+273.15</convert> T </input>

This means the value of T within the algorithm object should be equal to the given expression

where the upper object should supply the value of t.

The XML element input also can have attribute once, for example
<input value=500 once> T </input>

This means that this element will be applied to just once during the interaction of the upper object and
the algorithm. For example, if this is encountered in the compute object within the loop of the

ComputeOutput object, it will be applied just before the start of the loop.

The SGML element output contains the values to retrieve and can have the attribute name,

to translate the name, if necessary. By default, the name will be equal to the name of value from the

algorithm. The algorithm might produce several values for a single output element but this

is algorithm dependent.
It is possible to put convert objects after the output elements. For example,

<compute>
 <algorithm class=algorithm IDREF=L></algorithm>
 <input name=T> T </input>
 <input name=x2> x(Te) </input>
 <output> H_mix </output>
 <output name=x1> x(Bi) </output>
 <output name=x2> x(Te) </output>
 <convert> H_mix/x1/x2 </convert>
</compute>

Here all output objects form a set of values that is considered as input for the covert elements.

It is possible to place several covert elements in order to form a new set of output values.

However, the rule is that if any convert object is present within the compute object, then its set

of output values is formed by convert elements only. This means that in the example above the

output of the compute object consists from only single entity.

3.4.6. Object PhaseProperty (tdlib/ex/phase)

The purpose of the PhaseProperty object is to provide access to the properties of the

phase object. The examples of the PhaseProperty objects can be found in the directory

tdlib/ex/phase where they were used to print the phase properties. Its body contains just the

phase object to work with. It has the attribute DependentMoleFraction to specify what mole

fraction should be computed from the Σixi = 1 constraint. This attribute could be equal to first

(default), last, no or the name of the component.

On input from the compute object, the PhaseProperty object allows us to specify T, p,

and x(component_formula). On output it support a variety of values, shown in the next table.

 46

Description Text string

Temperature T

Pressure p

Mole fraction x(component_formula)

All state variables (T, p, and mole fractions) state(all)

Thermodynamic molar property (below any
property is specified as Z)

G, H, S, V, Cp, dVdT, dVdp

Property modifier (in the form Z_modifier) full (default), ref, mix, ideal, excess

Partial property Z(component_formula)

Partial properties for all components Z(all)

Value of internal variable internal(variable_name)

Values of all internal variables internal(all)

The stability of all the internal phases stable(all)

The stability of the internal phases stable(phase_name)

What properties does a particular solution model support and what is the meaning of the
property modifiers depends on the implementation.

3.4.7. Object PhaseEquilibrium (tdlib/ex/bise)

In the current release of TDLIB, the PhaseEquilibrium object is the most advanced

algorithm designed to compute the phase equilibrium. It contains the list of phases, which should

exist at the equilibrium, and the division of the external variables to the groups according to the Gibbs
phase rule, Eq. (2.28).

Let us consider an example of the Bi-Se system (directory tdlib/ex/bise). There are six phases
defined in the file sys.mod: L (a binary Bi-Se melt), s01 (solid Se), s10 (solid Bi), s11 (a

compound Bi0.5Se0.5 with a wide homogeneity range), s23 (solid Bi0.4Se0.6), and s32 (solid

Bi0.6Se0.4). The liquid L has a miscibility gap on the right from the s23 phase. This example is

taken from Ref [30].

The file alg.mod defines the phase equilibria that are necessary to compute the phase diagram

and they are employed in the file pd.out.mod to plot the phase diagram. Run the next commands

to obtain the plot
assess sys alg pd.out –o t
gnuplot p.td -

The file pd.out.mod contains the information, which could be called as the phase diagram

topology. In principle in the direct problems, the files analogous to alg.mod and pd.out.mod

could be generated automatically, because the molar Gibbs energies of the phases (file sys.mod)

contain all the information to build the phase diagram. Unfortunately, in the current release of
TDLIB, this functionality is not available.

I use TDLIB primarily for the inverse problems, when it is necessary to find the unknown
parameters within the Gibbs energy by means of fitting the experimental values. Here the only way to

create the files kind of alg.mod and pd.out.mod is by hand because if you take the file

sys.mod with an arbitrary values in the Gibbs energies than it would produce the phase diagram

with quite a different topology than required.

Let us start with two-phase equilibria. In this system, they describe the mono-variant lines. The
simplest are the liquidus lines between point phases and the melt. For example, in order to describe

the liquidus between s23 and L, one can define
<PhaseEquilibrium class=algorithm id=s23_L>
 <phases>

 47
 <phase class=phase IDREF=L></phase>
 <phase class=phase IDREF=s23></phase>
 </phases>
 <state status=dependent> x(L,Bi) </state>
 <state status=constraint> x(L,Se) </state>
 <state status=unknown> T </state>
 <state status=HardConstraint value=1> p </state>
</PhaseEquilibrium>

The object above contains the element phases with the list of phases and a list of the state

elements. The attribute status within the state element describes the status of external variables.

Within the PhaseEquilibrium object it is possible to use temperature (T), pressure (p), and the

mole fractions in the form x(phase_id,component_formula).

The status dependent means that this mole fraction should be computed according to the

constraint Σixi = 1. The status unknown declares that this variable is unknown in the system of

equations (2.26). The values of variables declared as constraint or HardConstraint are

assumed to be set before the beginning of the numerical solution of Eq. (2.26). Thus, the number of
unknown elements is equal to the number of equation in (2.26), which is given by Eq. (2.24). The

total number of constraint and HardConstraint elements is given by Eq. (2.28). In our

case, we have one equation to be solved and thus we should set two other variables in this

equilibrium.
The difference between the constraint and HardConstraint variables is tied with the

ability of the other objects to change their values. The value of the HardConstraint variable is

set in the PhaseEquilibrium object and could not be changed by other objects. On the other

side, the value of constraint is assumed to be set by the other objects, before they would like to

obtain the solution of the system (2.26).
The object above reflects the fact, that in the system in question, this equilibrium is considered

to be mono-variant, that is, there is a line at the phase diagram, describing the possible points

{x(L,Se), T}, which all correspond to the given equilibrium. The object defined above allows the user
to set the mole fraction of the melt and then to compute the liquidus temperature.

It is possible to define a different object for the same equilibrium
<PhaseEquilibrium class=algorithm id=s23_L_2>
 <phases>
 <phase class=phase IDREF=L></phase>
 <phase class=phase IDREF=s23></phase>
 </phases>
 <state status=dependent> x(L,Bi) </state>
 <state status=unknown> x(L,Se) </state>
 <state status=constraint> T </state>
 <state status=HardConstraint value=1> p </state>
</PhaseEquilibrium>

when the user should set the temperature and then the object will compute the mole fraction of the
melt.

The miscibility gap is also the two-phase equilibrium. It is possible to define as follows
<PhaseEquilibrium class=algorithm id=L1_L2>
 <phases>
 <phase class=phase IDREF=L></phase>
 <phase class=phase IDREF=L></phase>
 </phases>
 <state status=dependent> x(L_1,Bi) </state>
 <state status=unknown> x(L_1,Se) </state>
 <state status=dependent> x(L_2,Bi) </state>
 <state status=unknown> x(L_2,Se) </state>

 48
 <state status=constraint> T </state>
 <state status=HardConstraint value=1> p </state>
</PhaseEquilibrium>

Here again the pressure is considered as the constraint that can not be change in the other objects.
The user should set the temperature and the object will try to compute two unknown mole fractions
because in this case there are two equations in the system (2.26). Note that when a phase is listed

several times in the phases element, it should be referred to as phaseid_phasenumber, for

example, L_1 refers to the first liquid, L_2 to the second.

Three-phase equilibria in the two-component system are considered to be non-variant, that is,
in this case there should be no variables to set. For example, the object
<PhaseEquilibrium class=algorithm id=s10_L_s32>
 <phases>
 <phase class=phase IDREF=L></phase>
 <phase class=phase IDREF=s10></phase>
 <phase class=phase IDREF=s32></phase>
 </phases>
 <state status=dependent> x(L,Bi) </state>
 <state status=unknown> x(L,Se) </state>
 <state status=unknown> T </state>
 <state status=HardConstraint value=1> p </state>
</PhaseEquilibrium>

declares the three-phase equilibrium among s10, s32, and the melt. At the constant pressure there is

just a point in the phase diagram, describing this equilibrium, and the above object allows the user to

determine the temperature and the melt mole fraction for this point. Another example is the
equilibrium among s23 and two miscible liquids. Here it is possible to compute the non-variant point

with the next object
<PhaseEquilibrium class=algorithm id=s23_L1_L2>
 <phases>
 <phase class=phase IDREF=L></phase>
 <phase class=phase IDREF=L></phase>
 <phase class=phase IDREF=s23></phase>
 </phases>
 <state status=dependent> x(L_1,Bi) </state>
 <state status=unknown> x(L_1,Se) </state>
 <state status=dependent> x(L_2,Bi) </state>
 <state status=unknown> x(L_2,Se) </state>
 <state status=unknown> T </state>
 <state status=HardConstraint value=1> p </state>
</PhaseEquilibrium>

The number of unknowns is more than in the previous example because here there are more
equations in the system (2.26).

It is possible to declare the state variable as functional. This allows us to specify an

expression in order to compute the value of this variable from the values of other state variables in
the given PhaseEquilibrium object. In this respect, the status dependent can be considered

as a special hard-programmed case of functional and in the example above instead of
<state status=dependent> x(L_2,Bi) </state>

one could write
<state status=functional>
 <convert> 1 - <str>x(L_2,Se)</str> </convert>
 x(L_2,Bi)
</state>

 49

With this technique it is possible to compute the melting of the s11 solid solution as follows
<PhaseEquilibrium class=algorithm id=Tms11>
 <phases>
 <phase class=phase IDREF=L></phase>
 <phase class=phase IDREF=s11></phase>
 </phases>
 <state status=dependent> x(L,Bi) </state>
 <state status=unknown> x(L,Se) </state>
 <state status=dependent> x(s11,Bi) </state>
 <state status=functional>
 <convert><str>x(L,Se)</str></convert>
 x(s11,Se)
 </state>
 <state status=unknown> T </state>
 <state status=HardConstraint value=1> p </state>
</PhaseEquilibrium>

where the functional status gives us a means to define that at melting x(s11,Se) =

x(L,Se). Note that in the case of the Bi-Se system this equilibrium is metastable for the s11 phase

has the peritectic decomposition at lower temperatures.
Another option is status=value that adds a value of some property of any phase from the

PhaseEquilibrium object as an additional equation to Eq. (2.26). This allows us to put

additional constraints and gives us more flexibility in setting up the system of equation to solve. The
file tdlib/ex/algo/prop.mod demonstrates how by means of this feature to compute such a

temperature when the entropy of the phase is equal to the given value. Run
assess prop

to see how it works.
Now let us pay attention to the numerical behavior of the PhaseEquilibrium object,

which is based on the LBFGSB subroutine from the NETLIB/TOMS library. It well might be that the
object will not compute the result required. Actually in the two objects considered above there is
ambiguity that will give undesired results for sure. This is the main difference of the

PhaseEquilibrium object with the objects in the PHASE library, when the goal was to deliver

numerically reliable objects even in the case of the models with internal parameters. The main reason

is that there are many cases when the solution of Eq. (2.26) does not exist in principle for a given set
of phases with the current values of unknown parameters.

In order to enhance the chances for success, the user should set the bounds and initial estimates

for the unknowns. To this end, one can use attributes lower and upper to set the bounds and

value to set the initial estimate, for example
<state status=unknown lower=800 upper=950 value=880> T </state>

By default, the bounds for the temperature are PETmin and PETmax from the globals

object and for the mole fraction the default bounds are 0 and 1. This causes ambiguity in the object
with s23_L_2, defined above, when the melt mole fraction should be determined for the given

temperature. The problem here is that there are two possible solutions from both sides of the s23

phase. Run
assess sys s23_l

to see that in this case you can receive the solution from both sides in random.
Then, in order to make it clear what the user wants, it is necessary to use bounds, for example

<state status=unknown lower=0 upper=0.6> x(L,Se) </state>

to show that the solution from the left side is required. This is implemented in the file s23_l2.mod

and you can compare the results of the command
assess sys s23_l2

with above.

 50

The object L1_L2 introduced above will also lead to undesired result. With high probability

the user will receive the trivial solution, that is, x(L_1,Se) = x(L_2,Se), which always

satisfies the equilibrium equation (2.26) in this case. Then, in order to exclude this case it is necessary
to use bounds. The files mis.mod and mis2.out implement the cases without and with bounds.

Run
assess sys mis
assess sys mis2

and see the difference.
One could expect more intellectual numerical behavior of the PhaseEquilibrium object,

however in order to achieve it is necessary to develop specialized thermodynamic algorithms because
there are many different cases, which require a special treatment.

The object, presented in the current release, is designed mainly for the inverse problems when
the topology of the phase diagram and the rough estimates of non-variant point are known, and when
it is necessary to find the unknowns in the Gibbs energies, which will give the topology required. In

this case, it should be not that difficult to supply the information on bounds and initial estimates to
compute the phase equilibrium.

There are three different cases.
1) Initial estimates are set for all the unknowns.

2) Initial estimates are set just for a part of unknowns.
3) Initial estimates are not set at all.
Let us consider them in turn. Note that the bounds are always taken into account.

The first case is the most recommended. Here, the object runs the numerical subroutine
LBFGSB to solve the system (2.26) with the initial estimates supplied by the user. If the numerical

procedure converges, that's it. If not, then the object computes Fmin (Eq. 2.29) for the initial user
estimate and throws the exception with this value. This allows the upper object to employ Fmin as a

penalty if required (see Eq. 2.33).
Let us especially stress, that in the case of failure, Fmin is computed for the initial estimate

supplied by the user and not for the values returned by the numerical subroutine. This is very

important for the inverse problems when the Eq. (2.26) is solved as part of the optimization

procedure - determining unknown parameters in the vector Θ in Eq. (2.31). This means that in the

case of failure the residual computed by Eq. (2.33) corresponds to the case of so called "indirect
minimization", and overall behavior can be formulated as follows. When there is a bad initial guess

for the vector Θ and some phase equilibria are not computed (Eq. 2.26 has not been solved for the

given vector Θ), the optimization procedure (minimization of Eq. 2.34) will try to change the vector

Θ by means of "indirect optimization". The goal of "indirect optimization" is to minimize the values

of Fmin (Eq. 2.33), that in turn means better description of the initial user estimates for equilibria. If all
goes well, at some point the equilibria get eventually computed, and after that the optimization
procedure will automatically switch to residuals (2.32), which correspond to the "direct

minimization".
In the second case, the solution of Eq. (2.26) performed in two steps. First, the object tries to

find the best values of variables for which the initial guesses have not been supplied. That is, it tries to
minimize Fmin (Eq. 2.29) when the values of variables for which the initial guesses have been given are

fixed. Then the object releases all variables and try to solve Eq. (2.26). Again, if the numerical
procedure converges, that's it. If not, then the object throws the exception with the value of Fmin (Eq.
2.29) obtained in the first step.

In the third case, the object tries to automatically generate the initial guesses which are
necessary for the solution of Eq. (2.26). In the case of failure to solve the system (2.26), the object

throws the exception with the minimal value of Fmin obtained during all the tries. I would not
recommend this behavior for the inverse problems.

 51

On input from the compute object, the PhaseEquilibrium object allows us to set the

state variables specified as constraint, value or unknown. In the last case, it allows us to set

the initial guess. In order to indicate that the initial guess for the unknown variable should be chosen
automatically, it is necessary to set it to –1, for example:
<input value=-1> T </input>

On output the PhaseEquilibrium object support a variety of values, similar to those of

the PhaseProperty object and shown in the next table.

Description Text string

Temperature T

Pressure p

Mole fraction for the given phase x(phase_id,component_formula)

All state variables (T, p, and mole fractions) for

all the phases

state(all)

Thermodynamic molar property (below any
property is specified as Z) for the given phase

G(phase_id), H(phase_id),

S(phase_id), V(phase_id),

Cp(phase_id), dVdT(phase_id),

dVdp(phase_id)

Property modifier (in the form Z_modifier) full (default), ref, mix, ideal, excess

Partial property for the given phase Z(phase_id,component_formula)

Partial properties for all components in the given
phase

Z(phase_id,all)

The value of Eq. (2.29) fmin

All the final values for equations (2.26) (should

be close to zero)

fmin(all)

The final value for particular equation in (2.26) fmin(number)

The PhaseEquilibrium has its own state. The attribute SaveSolution controls

whether the solution of Eq. (2.26) found should be saved in this state (by default, SaveSolution

= 0 and the current solution is not saved). It is possible to set SaveSolution on input from the

compute object (see file pd.out.mod). After that, the solution from the previous computation is

taken as the initial guess for the next one. If you set debug=1, you could see it in the debug output.

Another attribute of the PhaseEquilibrium object, ThrowException controls whether

the exception discussed above will be thrown. By default, ThrowException = 1, and the

exception is thrown. If ThrowException=0, the object stops throwing exceptions, and in the case

of non-convergence just returns the values, which have no physical meaning.
There are global options for all the PhaseEquilibrium objects. They are listed below with

their default values.
<globals
 PETmax=2000
 PETmin=300
 PETolerence=0.01
 PEfactr=100000
 PEiter=100
 PEm=10
 PEpenalty=0.1
 PEpgtol=2.22045e-08
 PEsmall=0.1
 PEstep=1.49012e-06>
</globals>

 52

The values of PETmin and PETmax, as was mentioned above, set the default bounds for the

temperature. The value of PETolerence is used to determine whether the system (2.26) has been

solved. If the final Fmin (Eq. 2.29) is less than PETolerence, the system is considered to be solved.

If not, the exception is thrown. The value of Fmin returned by the PhaseEquilibrium object in

the case of failure is multiplied by the values of the attribute PEpenalty. Other attributes set the

numerical behavior of the LBFGSB subroutine (see files lbfgsbss.cpp and lbfgsb.f in the

directory tdlib/lib/toms/ for details).

3.4.8. Object reaction (tdlib/ex/bise)

Quite often, it is necessary to combine the results obtained in the different algorithm

objects. To this end, the object reaction has been developed. Its primarily use was assumed to

compute the property of the chemical reaction, but in the final state it can handle much more general
computations.

In the directory tdlib/ex/bise there are two example, reac1.mod and reac2.mod

that will introduce this object. The first file shows how to compute the EMF of the reaction

 2Bi(s) + 3Se(s) = 5Bi0.4Se0.6

by means of the equation

 E(T) = -(1/nF){5Gs23(T) - 2Gs10(T) - 3Gs01(T)}

The second file computes the drop enthalpy of Bi0.4Se0.6

 {H(T) - H(298.15)}/1000

Run
assess sys reac1
assess sys reac2

to see it in action.

Formally speaking, the reaction object is a container for the compute objects. It takes on

input any values from the upper compute object and just passes them to all the compute objects it

contains. On output it supports just all textual string that means the combined set of output values

from all the inner compute objects.

3.5. Describing residuals. Objects and formats in the VARCOMP library

The VARCOMP is the oldest library in the TDLIB. It was mainly written in 1994 when my

programming style was pretty close to FORTRAN. The initial reason for what I have decided to
switch to C++ was the need to support an array of pointers to functions in order to write the
generous subroutine to compute the sum of squares. The FORTRAN (at least at those days) did not

have this feature. Well, “A real programmer can write FORTRAN in any programming language”
[28].

In the current release, I left the code mostly as it is. I have just added the changes to make
VARCOMP compatible with the PHASE and TD_ALGO libraries, and some other improvements in

the interface. As a result the code looks rather nasty. Still, it works.

3.5.1. Object residual (tdlib/ex/bacu and tdlib/ex/line)

The object residual is used to implement Eqs (2.32) and (2.33). The object takes the

experimental point (2.30) on input and tries to estimate fi(xij, zi; Θ). If this was successful the residual
given by Eq. (2.32) is returned, otherwise the exception is caught to implement Eq. (2.33).

The residual object is based on the compute object. The idea is to take a set of

experimental points (Eq. 2.30, the values of yij, xij, zi can go in any order), and to pass them to the

 53

compute object as the input values. Then the first output value of the compute object is assumed

to represent fi(xij, zi; Θ) the residual is computed as Eq. (2.32).

The residual object can have several attributes.

Attribute Meaning
id identifier, by which it can be referred to in the data file
yname the name of yij in the series
xname the name of xij in the series (it affects only the use of Eq. 2.35)
ScaleOfX this is necessary to implement the approach of the like compromise,

described in Ref. [11] (by default, it is equal to 1)

If for the series using this residual the variance σ2
b,i is assumed to be equal to zero, then the

values of the attributes xname and ScaleOfX do not matter during the optimization.

Let us consider several examples.
<residual id=Cp23
 yname=Cp
 xname=T>
 <compute>
 <algorithm class=algorithm id=s23></algorithm>
 <input name=T> T </input>
 <output> Cp </output>
 </compute>
</residual>

The object above describes the residual

 εij = Cp,ij - Cp
calc(Tij)

for the phase s23, that should be declared earlier. The experimental point is assumed to have

columns Cp and T.

<residual id=HL
 yname=y
 xname=x2>
 <compute>
 <algorithm class=algorithm id=L></algorithm>
 <input name=T> T </input>
 <input name=x2> x(Se) </input>
 <output> H_mix </output>
 <output name=x1> x(Bi) </output>
 <output name=x2> x(Se) </output>
 <convert> H_mix/x1/x2/1000 </convert>
 </compute>
</residual>

This object describes the residual

 εij = yij – {Hmix(Tij, x2)/(x1x2)}/1000

The experimental point is assumed to have columns y, T and x2.

<residual id=s23_L
 yname=T
 xname=x2>
 <compute>
 <algorithm class=algorithm id=s23_L></algorithm>
 <input name=T> T </input>

 54
 <input name=x2> x(L,Se) </input>
 <output> T </output>
 </compute>
</residual>

The object describes the residual for the liquidus temperature

 εij = Tij – Tij
calc

The experimental point is assumed to have columns T and x2. The object s23_L corresponds to the

PhaseEquilibrium object, which is necessary to compute the liquidus. Note that in this case the

experimental temperature is set as the initial guess to solve the Eq. (2.26) for the given mole fraction
of the liquid. This means, that if the liquidus temperature could not been computed because the

values of the vector Θ are too bad, the residual will be equated to Fmin, estimated at the experimental

point, that, in turn, corresponds to the “indirect minimization”.

<residual id=s11_L_s23
 yname=T>
 <compute>
 <algorithm class=algorithm id= s11_L_s23></algorithm>
 <output> T </output>
 </compute>
</residual>

The object describes the residual for the non-variant temperature

 εij = Tij – Tij
calc

The experimental point is assumed to have a column T. In this case it is not necessary to set the

experimental point as the initial guess to solve the Eq. (2.26). The initial values for both temperature

and the mole fraction of the liquid should be set right in the object s11_L_s23 because they should

be the same for all experimental points.

3.5.2. Objects in the category output

The VARCOMP library adds three simple objects to the output category, SeriesOutput,

ResidualOutput, and SpinodalOutput.

The SeriesOutput object allows us to add experimental series to the plot (see, for example,

the file tdlib/ex/bacu/pd.out.mod). It contains the names of the series and may have two

attributes, Residuals and AllPoints. The first specifies whether the original values should be

plotted (Residuals=0), or the residuals (Residuals=1). The second – whether it is necessary

to plot the experimental points marked as “outliers”.

The ResidualOutput object simplifies plotting the recommended solution along with the

experimental point (see tdlib/ex/line/ini.mod). In principle, all the recommended solutions

can be done with ComputeOutput, but it might take more efforts than in the case of

ResidualOutput.

The SpinodalOutput object checks the binary solution for the miscibility gaps (see,

tdlib/ex/bacu/non.out.mod). It has rather primitive capabilities, and it should be redone in

the future.

3.5.3. Describing experimental values (tdlib/ex/bacu/ and tdlib/ex/line/)

A data file as well as a hypothesis file has a simple, not XML-based format. I developed it in

1994 when I had no idea what the SGML is.
A data file is written in the free format. White space is recognized as the word delimiter, so the

identifies cannot contain spaces. The file consists from the experimental series separated by
semicolon. Each series comprises a few fields separated by commas

 55
series_name,
equation_name,
column_names,
point1,
point2,
...,
pointN;

series_name is any identifier, by which this experiment will be referred to in the hypothesis file

and in the listing. equation_name is a residual name which should be defined in the model files.

column_names means one or a few identifiers separated by space. Their number determines a total

number of experimental values in each experimental point. They also will be used in the residual

object. point_i means one of a few double values separated by space. The number of values to

read is equal to the number of column names.

If the number of words in the fields series_name or equation_name is more than one,

the only first is taken and others are ignored. If there are more values in the field point_i than the

number of the column names, the extra values are ignored. If the number of values is less than that,

the absent ones are initialized by zeros. Such rules permit you to write comments in the fields
series_name, equation_name, and point_i.

You can exclude either a series or a particular experimental point from processing. To this end,
the symbol * can be placed in the data file. In order to exclude a series, put the symbol * before the

series name, in order to exclude a point, put the symbol * in the beginning of the field point_i to

exclude. It is also possible to exclude a series in the hypothesis file.
Although points and series marked with * don't take place in the calculations, they can be

presented in the listing and in the plots.
In the current release, there are two optional additions to the format described above. First, it is

possible to put a few elements
<var name=name value=value></var>

after the equation_name and before the comma, in order to describe the values, which were

constant in this experiment.
Second, it is possible to convert the experimental values on input (dimension conversion and so

on). To this end, a few convert elements could be put before the column_names. Each element

will be interpreted as a new column with a name given by the name attribute. Names of the old

columns can be used freely within the convert object.

3.5.4. Describing variance components (tdlib/ex/bacu/ and tdlib/ex/line/)

In principle, the hypothesis file is optional, I am not quite sure that the default hypothesis can fit
your needs. As a result, if you would like to obtain reasonable results, you have to prepare this file.

The file describes the variance components described in Eq. (2.36). A more accurate statement
that the file allows the user to state hypotheses on the reproducibility standard deviation

 sr,i = sqrt(σ2
r,i)

and on two ratios

 sqrt(γa,i) = sqrt(σ2
a,i/σ

2
r,i), sqrt(γb,i) = sqrt(σ2

b,i/σ
2

r,i)

The default hypothesis is that all the series are assumed to have its own reproducibility

variances, σ2
r,i , but the same quantities

 γa,i = γa, γb,i = γb

that is, the number of unknown variance components is N + 2 (N is the number of experimental
series).

 56

The hypothesis file is written in the free format and contains the statements on the experimental
series described in the data file. All statements must be finished by semicolon.

The assess reads the statement on a particular series, modifies the hypotheses accordingly

and continue reading next statements. The program starts the optimization with the only series from
*.set files taken into account.

The format of a statement on an experimental series is
[*] ser_name, hyp_fl sri, hyp_fl sga, hyp_fl sgb;

The symbol *, if present, means that the series will be ignored. ser_name is a name of the

experimental series from the data files. All the words after the first one will be ignored until comma.
hyp_fl is a hypothesis flag. sri is the initial value for standard deviation of reproducibility, sga is

the initial value of sqrt(γa,i), sgb is the initial value of sqrt(γb,i).

There are three choices for the hypothesis flag. The first is the characters # followed by a

number from 0 to 29. This means that the variance component belongs to the i-th set with the same
variance. The second is the character % which shows that the variance component is unknown but it

has no relationships with variance components from the other series. This is for the degenerated
cased when the number of unknown variance components in the i-th group is equal to one. Finally,
the character * makes the variance component fixed (it will not be changed in the maximization

procedure).
For example, the next fragment

series_1, #1 1, #3 0, #2 0;
series_2, #1 1, #3 0, #2 0;
series_3, #2 1, #3 0, #1 0;
series_4, #2 1, % 0, #1 0;
series_5, % 1, #3 0, #1 0;
series_6, * 10, * 5, * 5;

declares seven unknown variance components, 1) σ2
r,1 = σ2

r,2, 2) σ2
r,3 = σ2

r,4, 3) σ2
r,5, 4) γa,1 = γa,2 =

γa,3 = γa,5, 5) γa,4, 6) γb,1 = γb,2, 7) γb,3 = γb,4 = γb,5. The initial value for the standard deviations is 1, for
gamma’s – 0. The variance component for the sixth series are fixed.

If you need just weighed least squares, you can write the hypothesis file as follows
series_1, * 2.5, * 0, * 0;
series_2, * 3.5, * 0, * 0;
series_3, * 1.5, * 0, * 0;
series_4, * 2.8, * 0, * 0;
series_5, * 3.8, * 0, * 0;
series_6, * 5.5, * 0, * 0;

where all the variances of systematic errors are equated to zero, and some fixed values are entered for

the standard deviations of reproducibility.

3.5.5. Describing unknowns (tdlib/ex/bacu/ and tdlib/ex/line/)

As was mentioned in the PHASE library, the objects might have a coef objects. The simplest

form of the coef object is as follows
<coef> 5 </coef>

where the object is considered as anonymous. In this case it is considered to be unreachable from the

optimizer.
On the other hand, it is possible to put in an id and a flag to show whether this coefficient will

be fixed during the optimization.
<coef id=a unknown=0> 5 </coef>
<coef id=b unknown=1> 10 </coef>

 57

The difference between <coef> 5 </coef> and <coef id=a unknown=0> 5

</coef> is that the optimizer is already aware of the coef a (even though it will be fixed), and

the user can change the status of this coefficient in the par-files.

We can put lower and upper bounds on the optimized coefficient, if optimizer can handle this
information, for example
<coef id=c unknown=1 lower=0 upper=10> 3 </coef>

In the current release only LBFGSB subroutine could handle the bounds. Other optimizers will just

ignore this information.
Another possible attribute is scale.

<coef id=c unknown=1 scale=10000> 0 </coef>

It shows, as it name states, the scale of the unknown variable. The scaling is done the coef class

itself and, as such, it does not depend on the optimizer.
The next step is to reference the previously declared coefficient, for example

<coef IDREF=c></coef>

This allows us to declare the same unknown in the several places simultaneously. The namespace of
coef is global to the whole application.

There are cases when it is necessary to express that there is some constraint between
unknowns. This can be handled in some extent with the use of the computed coefficients, for example
<coef id=e computed> a + b </coef>

where you can put in the body any expression, containing ids of unknown coefficients.

Currently, the next rule is implemented. The namespaces of computed and unknown
coefficients are different, and it is not possible to refer to the id of the computed coefficient within

another computed coefficient. I do not like this rule, and probably it will be modified.

Note that the computed coefficient could be referenced by means of
<coef IDREF=e computed> </coef>

3.5.6. Describing optimizers

The algorithm for maximizing Eq. (2.37) under the linear error model given by Eq. (2.35) is

described in Ref. [8]. It comprises two steps, iterated consecutively. First, the (2.37) is maximized
over unknown variances at fixed parameters, and then the (2.37) is maximized over unknown
parameters at fixed variances. The last step is the most crucial and it is equivalent, as it is shown in

Ref. [8], to the minimization of the least squares. I have had very good results here with the ZXSSQ
subroutine from the ISML library (http://www.vni.com/products/imsl/). Their implementation of the

finite difference Levenberg-Marquardt algorithm is very robust and reliable. However, it is a
commercial product and it is not included in the release.

In TDLIB’00 you have a choice from three optimizers from NETLIB, tensolve (default),

lbfgsb, and hooke. This could be set within the globals object as follows
<globals>
 <optimizer algorithm=tensolve
 NBigIterations=5>
 </optimizer>
</globals>

where the attribute algorithm sets the optimizer, the NBigIterations – the number of

iterations over the two steps mentioned above.
Each optimizer has its own options to set. Run

assess -m

to watch them. Their description can be found in the files tensolve.f, lbfgsbss.cpp and

lbfgsb.f in the directory tdlib/lib/toms/, and in the file

tdlib/lib/varcomp/hooke.cpp.

 58

The hooke implements the famous Hooke and Jeeves algorithm and it could be used to

proceed from the bad initial guess, because the subroutine does not use the objective function

derivatives. However it might well take a lot of iterations to complete.
The tensolve works reasonably well, provided the initial guess is not very bad. Note that

you must scale the unknowns (by means of the attribute scale), in order to use tensolve

successfully. Otherwise, the results are unpredictable.
The lbfgsb is the only choice to take into account the bounds on the variable. However, the

convergence is slow, especially if the problem tends to be ill-behaved. As tensolve, it also requires

the scaling.

 59

4. Case studies

4.1. Fictitious A-B binary system from the ThermoCalc Parrot guide

(tdlib/ex/tc_ab)

The most famous software for computational thermodynamics is ThermoCalc [12]. I really like
it. The most striking feature is that Bo Sundman created it in Fortran. And to achieve that kind of

flexibility you have in ThermoCalc by means of Fortran is very, very sophisticated task. Cheers to Bo.
In ThermoCalc there is a module Parrot for the inverse problems, and there is an example there

to demonstrate how it works. In the directory tdlib/ex/tc_ab there are files to show how this

example can be solved by TDLIB. If you have been working with Parrot than you can make the
comparison. Below there is just a brief description of the problem. More details can be found in the

ThermoCalc guide.
There are primary bcc solid solutions for both solid A and B. They are described by the bcc

solid solution with the miscibility gap. The solid B and its primary solid solution at higher
temperatures undergoes bcc to fcc transformation. There is no miscibility gap in the liquid phase.

There is a stoichiometric compound A2B, which melts congruently but at lower temperatures it
decomposes to primary solid solutions. Below there is a phase diagram with the experimental points
drawn by TDLIB.

400

600

800

1000

1200

1400

1600

1800

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(T
/K
)

x(B)

E1L
E1B
E2L
E2B
E3L
E3B
E3F

E4B1
E4B2

L1
L2

L3L
L3F
L4L
L4B

Fig. 4. The phase diagram of the fictitious A-B binary system with the available experimental

points.

 60

-6000

-5000

-4000

-3000

-2000

-1000

0

0 0.2 0.4 0.6 0.8 1

H
m
ix

x(B)

Hmix
H_mix

Fig. 5. The enthalpy of mixing of the liquid melts in the fictitious A-B binary system with the

available experimental points.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

a
(B

)

x(B)

A
a_B

Fig. 6. The activity of B in relation to fcc in the liquid melts in the fictitious A-B binary system

with the available experimental points.

 61

For the liquid phase there are experimental enthalpies of mixing and the activity of the second
component as shown in Fig. 5 and 6 respectively. The task is to determine unknowns in the Gibbs

energies from the available experimental values.
The Gibbs energies of the phases are defined in the file sys.mod. All three solution phases are

modeled by the Redlich-Kister model (SimpleSolution object) as it was suggested in the Parrot

guide. The number of unknown parameters is chosen also in accordance with the Parrot guide. Note
the scaling of the unknowns. The file alg.mod defines the phase equilibria, which are necessary to

describe the phase diagram shown above. Once more, in the inverse problem the file analogous to
alg.mod can be made by hand only, because in the beginning we do not know the values of the

unknowns.

The available experimental values are given in the file expr.dat. The primary experimental

results for the phase equilibria have been given in the weight percents, so in the file they are

converted to the mole fractions. In the current release of TDLIB, the values in the non-standard
dimensions should be converted to the standard ones. The way of converting is not very elegant, it is

relatively low-level, but it is very flexible in nature. Another limitation of the current release is that
the experimental point is possible to bind with just a single residual. As a result, when we have a tie-
line and it is necessary to form two residuals, the experimental points are duplicated (see series L3L

and L3F for example). The file res.mod defines the residuals. It shows what calculations are to be

done in order to compute the member of the sum of squares related to the given experiment. The file
wls.set sets the weights. They are assigned the same values as in the Parrot guide.

Finally, the file out.mod defines the output to be computed for the found unknown

parameters. It describes how to create several files, listed in the next table.

Extension Description How to watch the result (name

is the name of the output given
in the command line)

pd The phase diagram with the experimental point
(see Fig. 4)

gnuplot name.pd -

hmix The enthalpy of mixing with the experimental

points (see Fig. 5)

gnuplot name.hmix -

act The activity of B with the experimental points (see

Fig. 6)

gnuplot name.act -

g600,
g1100,
g1500

The molar Gibbs energies of the phase at 600 K,

1100 K, and 1500 K accordingly (see Fig. 7 to
Fig. 9)

gnuplot name.g600 –

gnuplot name.g1100 –

gnuplot name.g1500 –
non Non-variant points. any text editor
mis The spinodal estimates for the melt, bcc and fcc

solutions
any text editor

The command

assess sys alg res out –d expr –s wls –o r1

will run the inverse problem described above with the initial estimates taken from the file sys.mod.

I have put there the results pretty close to those obtained in the Parrot guide, so the command above

produces the solution of the inverse problem without any problem, and we will consider it as the
etalon. The result of this command can be found in the subdirectory out, and the plots are given in

Fig. 4 to Fig. 9.

 62

-2000

0

2000

4000

6000

8000

10000

12000

0 0.2 0.4 0.6 0.8 1

G
m

x(B)

L
bcc
fcc

A2B

Fig. 7. The molar Gibbs energies of the phases in the fictitious A-B binary system at 600 K.

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

5000

0 0.2 0.4 0.6 0.8 1

G
m

x(B)

L
bcc
fcc

A2B

Fig. 8. The molar Gibbs energies of the phases in the fictitious A-B binary system at 1100 K.

 63

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

0 0.2 0.4 0.6 0.8 1

G
m

x(B)

L
bcc
fcc

A2B

Fig. 9. The molar Gibbs energies of the phases in the fictitious A-B binary system at 1500 K.

Now let us discuss, how it would be possible to obtain the values of the unknowns in the real

life, when we do not have initial guess.
In any case we have start with some initial guess. The better it is, the more chances for the

success. The file ini.par contains the initial guess chosen in the Parrot guide. We could try it with

the command as follows
assess sys alg res out –d expr –s wls –v ini –o r2

It happens that the initial guess chosen in the Parrot guide is considered to be very good for the
TDLIB because this command produces the same solution as r1 and you do not have go through all

the steps described in the Parrot guide. Because of the trick to handle the phase equilibria when they
are not computed (see Eqs 2.29 and 2.33 and the discussion in the section devoted to the
PhaseEquilibrium object) the TDLIB finds the solution in this case at once.

Let us try another initial guess that I would have chosen by myself. It is presented in the file
ini2.par. The reason for this initial guess is as follows. The liquid is considered to be the ideal

because the activity and the heat of mixing is not very far from the ideal behavior. The bcc and fcc
both are supposed to have a miscibility gap. You should expect it, because there are two primary

solutions, and this is pretty typical for the phase diagram shown in Fig. 4. The zeroes for the A2B
compound are because I know nothing better to suggest. If you run the optimization starting from
this initial guess
assess sys alg res out –d expr –s wls –v ini2 –o r3

then you should see that for the TDLIB this initial guess is considered to be good either. The result

obtained is again the same as r1, even though it takes something longer to converge.

Now let us take a really bad initial guess described in the file ini3.par. You will find the

zeroes only there. It means that all the three solutions phases are considered to be ideal. This initial
guess is much close to the real life case when you just do not know were to start. With the default
setting, this case breaks TDLIB. If you run

 64
assess sys alg res out –d expr –s wls –v ini3 –o p1

the optimizer will stop the optimization procedure at the point when the most of the phase equilibria

are not computed. Well, the trick implemented in the TDLIB works not in the 100% cases. It is
necessary to make much more researches in order to come to truly “automatic optimization”. You

must expect that in the real life cases the optimization at once is unrealistic at the current state of the
art of the thermodynamic assessment.

What could be done right now? There are several strategies that I employ in my own work.
First strategy is described in the Parrot guide – “step by step optimization”. It is necessary to divide
the experiments into the groups and to suggest of a sequence of partial optimizations. During them,

the assessor comes to a relatively good initial guess, and then he/she performs the full optimization at
the last stage. In the case in question, we could separate the experiments on the liquid

thermodynamics (file l.set), then the experiments on equilibria between the liquid and the A2B

phase (file a2b.set), the equilibria among the liquid, A2B and bcc (file bcc.set), and finally the

equilibria including fcc (file fcc.set). The typical procedure is to fix all the unknowns but the

liquid in the ini3.par file and to run
assess sys alg res out –d expr –s l –v ini3 –o p1

Then, fix the values obtained for the liquid and unfix the values for the A2B phase in the p1.par file

and run
assess sys alg res out –d expr –s l a2b –v p1 –o p2

Now, unfix the values for bcc phase in the p2.par file and run
assess sys alg res out –d expr –s l a2b bcc –v p2 –o p3

After that, fix all the values but for fcc phase in the p3.par file and run
assess sys alg res out –d expr –s l a2b bcc fcc –v p3 –o p4

Finally, unfix all the values in the p4.par file and obtain the final result
assess sys alg res out –d expr –s l a2b bcc fcc –v p4 –o p5

The biggest problem with the approach above is that is not quite clear how to separate the
problem. I can suggest no formal algorithm here. Try to meditate for a while. It really helps.

Another approach is to play with the option
<globals
 PEpenalty=0.1>
</globals>

As it was discussed earlier, when the phase equilibria is not computed the
PhaseEquilibrium object returns Fmin multiplied by PEpenalty. When the initial guess is bad,

this product is big and it mostly influences the steps made by the optimizer. During these steps the
optimizer comes to such a point from what it can not move further.

There are three files, p01.mod, p001.mod, and p0001.mod, which set this option to 0.01,

0.001 and 0.0001 accordingly. Now try the next commands with the original ini3.par file when

all the unknowns are unfixed
assess p01 sys alg res out –d expr –s wls –v ini3 –o q1
assess p001 sys alg res out –d expr –s wls –v ini3 –o q2
assess p0001 sys alg res out –d expr –s wls –v ini3 –o q3

You should see that the third try produces the solution the same as the original r1. So, in this

case this approach helps to come to the final solution at once even from rather a bad initial guess.
The problem here that it does not work all the time. In many cases the smaller values of the

penalty leads to the solution when some equilibria are still not computed but because of the small
penalty the optimizer ignores this fact.

Final approach is to try the hooke optimizer. Let us consider the solution q2 obtained above.

It gives the reasonable topology of the phase diagram, all the phase equilibria are computed, but the

description of the right side of the phase diagram is rather bad. Still, the default tensolve

optimizer can not make a move from this point because it is gradient-base. If we run hooke at this

 65

stage it will help us to make a move, and then we can receive the final solution starting tensolve

again. Run the next commands to see it
assess hooke sys alg res out –d expr –s wls –v q2 –o q4
assess sys alg res out –d expr –s wls –v q4 –o q5

 66

5. Information for programmers

Just key points for my library are described below. I would suggest you first read carefully this
document and run examples in order to understand the whole design. Then have a look at the code.

There are a few comments in the files, however knowledgeable people say, "A real programmer does
not need comments - a code is obvious" [28].

The library is written in C++. In this release, I have switched from Borland C++ 5.01 to gcc

2.95.2 compiler. I have not tried to port it to other compilers. If your compiler is not gcc, then you
have to pay a special attention to the next things.

1) A string class in gcc supports copy-on-write technique. It means that in the next code
string a="a very long string"
string b;
b = a;

the assignment b = a is considered to be a fast operation and it does not require a new memory. If

this is not the case in your compiler then the TDLIB will be slower while doing input.

2) There is some Fortran code to compile. You have to compile it and to link it with C++ code.
In gcc it could be done with no problem.

3) There is some f2c'd code (converted from Fortran to c with f2c,
http://www.netlib.org/f2c/). It requires the f2c run-time library. It is included in gcc as

g2clib. Also these files require the header g2c.h (in gcc f2c.h from f2c is renamed to g2c.h).

I am working under Cygwin (http://sourceware.cygnus.com/cygwin/) under

Win32. The filenames here are case-insensitive, so I might miss to check this carefully.

The library is copyrighted by myself and available under the GNU General Public License
(version 2 or later). The main idea behind the GNU General Public License is to allow for the widest

free distribution of the library (free means freedom, not price). You can find the library at my
homepages, http://www.chem.msu.su/~rudnyi/tdlib/.

Still, there are some more legal problems because my library relies on other libraries, but they

are distributed under their own conditions. Thus, you have to read all the licenses carefully to
understand your rights.

Basically, if you are making research you can use all the libraries for free without a problem. If
you are going to develop the commercial software, you might be out of luck. Actually, you can do it
legally, but first read the GNU General Public License. It imposes certain limits on the distribution of

the commercial software. Second, check the licenses for supplementary libraries. You may need to
pay to their authors.

All of the libraries are included in the distribution for your convenience. According to their
licenses, they can be distributed for free. Whether you can use them or not legally, this is another

question.
The table below summarizes all the libraries employed in TDLIB.
Sometimes, I needed to make some changes to the supplementary libraries. It is was necessary

either to compile them, or to convert from Fortran to C++ (small editing after f2c), and sometimes to
correct the errors. All such cases are documented within the corresponded source code (search for

the string "EBR" within the code).
The make from tdlib/lib should copy necessary headers to tdlib/include, build all

the libraries and put the binaries to tdlib/bin, and finally to build assess, which will also be

placed to tdlib/bin.

 67

Library Source, comment License

phase mine GNU Public License

td_algo mine GNU Public License

varcomp mine GNU Public License

callback Internet, employed to call a user

function from numerical
subroutines

free (read the license)

f2c netlib/f2c, a header that I have not

found in gcc

free (read the license)

lapack and blas netlib/lapack, linear algebra free (read the license)

minit Internet, linear programming
solver

free (read the license)

toms netlib/toms, numerical solvers free for research (read the license)

In the tables below there are lists of files from my libraries with small comment on what you

will find there. The files go in the order, in which I would recommend to get acquainted with them.

The files in the PHASE library

file Classes description

general.h and

general.cpp

gError, CanNotCompute, CheckInf,

PutTab, ObjToString, limits, global,
StateTp, StateX, FirstDerivative,
SecondDerivative, MixedDerivative,

instringstream, SGML, parser

Some definitions and small

objects employed throughout
the library

calc.h and calc.cpp calculator A simple interpreter

coef.h and coef.cpp coef, CalculatorWithCoefs Unknown parameters to be
determined in the optimizer

elem.h and elem.cpp elem Chemical element
formula.h and
formula.cpp

MolecularFormula, formula Molecular formula and
chemical formula

func_Tp.h,
func_Tp_imp.h,

func_Tp.cpp

Ref_func_Tp, func_Tp, simple_Tp,
null_Tp, Cp_zero, Cp_const,

Cp_BB2, Cp_BB2_Tref, Cp_BB4,
IVT_Tp, SGTE_Tp, ideal_gas,

V_const, alpha_const,
alpha_kappa_const,
alpha_kappa_const2, compound_Tp,

complex_Tp, calc_Tp

Function in temperature and
pressure

species.h, species.cpp Ref_species, species, matrix, GetNu Species and handling of the

formula matrix
func_tpx.h,

func_tpx_imp.h
func_tpx.cpp, interact.h,
interact.cpp

SymMatrix, RefFuncTpx, FuncTpx,

NullFuncTpx, IdealMixing,
Reference, interaction,
RedlichKister, HochArpshofen,

Polynomial

Function in temperature,

pressure, and mole fractions

phase.h, phase.cpp ArrayFirstDerivative,

ArrayMixedDerivative, RefPhase,

The abstract definition of the

phase and the simple phase

 68

ObjFromProxy, phase, RefSimple,
NullPhase, PointPhase,

NumericalDerivatives

models

intvars.h, intvars.cpp RefInternalVariables,

OneInternalVariable.
InternalVariables

The abstract definition of the

solution model with the internal
variables

simple.h, simple.cpp SimpleSolution The solution without internal

variables
cuox_or.h, cuox_or.cpp CuOx_ordered_plane Y247-like solutions

cuox_pl.h, cuox_pl.cpp CuOx_plane Y123-like solutions
ass_sol.h, ass_sol.cpp AssociatedSolution,

AssociatedSolutionBasis,
AssSolOneReact, AssSolManyReact,
associated_solution

Associated solution models

The files in the TD_ALGO library

file Classes description

td_algo.h,
td_algo_imp.h,

td_algo.cpp

convert, RefAlgorithm, algorithm,
SimpleAlgorithm, InputValue,

OutputValue, compute,
PassThrough, PhaseProperty,

reaction

The abstract definition of the
algorithm and the simple

algorithms

phase_eq.h,
phase_eq.cpp

PhaseEquilibrium Algorithm for the phase
equilibrium

output.h, output.cpp RefOutput, output, NullOutput,
comparison, CycleOutput,

ComputeOutput, OutputFile

The abstract definition of the
output and the simple objects

The files in the VARCOMP library

file Classes description

common.h, data.h,

common.cpp, data.cpp

data Experimental points

residual.h, residual.cpp residual Residual

opt.h, opt.cpp,
hooke.cpp

RefOptimizer, optimizer, tensolve,
LBFGSB, Hooke, ZXSSQ

Optimizers

sumsqr.h, static.cpp,

sumsqr.cpp,
sumsqrin,cpp,

sumsqrut.cpp,
sumsqrpr.cpp

series The implementation of the

algorithm to maximize the
likelihood function

post_an.h post_an.cpp SeriesOutput, ResidualOutput,
SpinodalOutput

Post-analysis

global.cpp globals Support for the globals object

assess.cpp A stub to compile assess

6. Question, discussion, bugs, etc

The library presented is far from being complete. I consider it just as TDLIB’00. I have set up a

discussion list

 69
tdlib@td.chem.msu.su

for those who interested in these matters. Your questions, comments, bug reports are welcome.

In order to subscribe send a line with one word subscribe to
tdlib-request@td.chem.msu.su

If you would like just to receive notifications for the next updates, send a line with one word
subscribe to
update-request@td.chem.msu.su

7. Acknowledgment

The library presented was partly made possible by Grant 99-03-32629 from the Russian

Foundation for Basic Research and by Grant 99079 from Russian State Program "High Temperature
Superconductivity".

8. Literature

1. T.M. Gordon. Software and Data for Thermodynamics and Phase Equilibrium Calculations in
Geology, http://ichor.geo.ucalgary.ca/~tmg/Research/thermo_links.html.

2. C.W. Bale. Web Sites in Inorganic Chemical Thermodynamics,
http://www.crct.polymtl.ca/fact/websites.htm.

3. Proceedings of the 1995 Ringberg Workshop on Unary Data, CALPHAD, 1995, v.19, N 4.
4. The GNU Manifesto, http://www.gnu.org/gnu/manifesto.html.
5. The GNU General Public License, http://www.gnu.org/copyleft/gpl.html.

6. GNU's bulletin, http://www.gnu.org/bulletins/bulletins.html.
7. W.R. Smith, R.W. Missen. Chemical Reaction Equilibrium Analysis: Theory and Algorithms.

1982, Wiley and Sons Inc., 364 p.
8. E.B. Rudnyi. Statistical model of systematic errors: linear error model. Chemometrics and

Intelligent Laboratory Systems. 1996, v. 34, N 1, p. 41-54. The earlier version is available at
http://www.chem.msu.su/~rudnyi/pcmler.html.

9. E.B. Rudnyi. Statistical model of systematic errors: An assessment of the Ba-Cu and Cu-Y

phase diagram. Chemometrics and Intelligent Laboratory Systems, 1997, v. 36, p. 213-227.
Some information is available at http://www.chem.msu.su/~rudnyi/bacuy/.

10. V.V. Kuzmenko, I.A. Uspenskaya, E.B. Rudnyi. Simultaneous assessment of thermodynamic
functions of calcium aluminates. Bulletin des Societes Chimiques Belges, 1997, v. 106, N 5, p.

235-243. The preprint is available at http://www.chem.msu.su/~rudnyi/aluminates/.
11. E.B. Rudnyi, V.V. Kuzmenko, G.F. Voronin. Simultaneous assessment of the YBa2Cu3O6+z

thermodynamics under the linear error model, J. Phys. Chem. Ref. Data, 1998, v. 27, N 5, p.

855-888. The preprint is available at http://www.chem.msu.su/~rudnyi/Y123/.
12. ThermoCalc, http://www.met.kth.se/tc/tc.html.

13. E.B. Rudnyi, G.F. Voronin. Classes and objects of chemical thermodynamics in object oriented
programming. 1. A class of analytical functions of temperature and pressure, CALPHAD. 1995,

v. 19, N 2, p. 189-206.
14. E.B. Rudnyi. Classes and Objects of Chemical Thermodynamics in Object-Oriented

Programming. 2. A Class of Chemical Species. Second Electronic Computational Chemistry

Conference, November 1995. http://www.chem.msu.su/~rudnyi/species/.
15. B. Stroustrup. The C++ Programming Language (Third Edition), Addison-Wesley, 1997.

16. A Gentle Introduction to SGML, Chapter two of Guidelines for Electronic Text Encoding and
Interchange (TEI P3), http://www-tei.uic.edu/orgs/tei/sgml/teip3sg/

17. C.F. Goldfarb. The SGML Handbook. Oxford: Oxford University Press, 1990. 688 p.

 70

18. Thermodynamic properties of individual substances (in Russian). ed. V.P. Glushko. Moscow,
Nauka, in four volumes, 1978 - 1982.

19. R.G. Berman, T.H. Brown, Contrib. Mineral. Petrol. 89, 168 (1985).
20. A.T. Dinsdale. SGTE data for pure substances. CALPHAD, 1991, v. 15, N 4, p. 317-425.

21. K.C. Chou, Y.A. Chang. A study of ternary geometrical models. Ber. Bunsenges. Phys. Chem.,
1989, v. 93, N 6, p. 735-741.

22. H.L. Lukas, J. Weiss, E.-Th. Honig. Strategies for the Calculation of Phase Diagram.

CALPHAD, 1982, v. 6, N 3, p. 229-251.
23. M. Hoch. The application of the Hoch-Aprshofen model to liquid systems with compound-

forming tendencies and a miscibility gap. CALPHAD, 1987, v. 11, N 2, p. 225-236.
24. M. Hillert, L.I. Staffansson. The regular solution model for stoichiometric phases and ionic

melts. Acta Chem. Scand. 1970, v. 24, p. 3618-3626.
25. V.A. Lysenko. A thermodynamic model for liquid systems containing nonmetallic elements.

Inorganic Materials. 1998, v. 34, N 9, p. 926-931.

26. A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, Y. Dessureault. The modified
quasichemical model. I. Binary solutions. 1999, to be published.

27. The ASCEND IV Syntax and Semantics for release 0.9,
http://methi.ndim.edrc.cmu.edu:8888/pdfhelp/syntax.pdf, see also
http://www.cs.cmu.edu/~ascend/pdfhelp.htm.

28. Real Programmers Don't Use Pascal, DATAMATION, 1983, v. 29, N 7, p. 263-265.
29. Y.Jiang, W.R. Smith, G.R. Chapman. Global Optimality Conditions and their Geometric

Interpretation for the Chemical and Phase Equilibrium Problem. SIAM J. Optimization, 1995,
November issue.

30. A.V. Antipov, E.B. Rudnyi, Zh.V. Dobrokhotova. Thermodynamic Assessment of the Bi-Se
system. Inorganic Materials, 2001, N2. The preprint in Russian is available at
http://td.chem.msu.su/publ/bise.doc.

