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sounds i ABSTRACT. We show that in order to obtain a reliable estimate of

1© solvent¢he error in equilibrium constants the covariances between the
onds as & epthalpies of formation and the reduced free epergies must be used
:n in thé;n addition to the errors in the enthalpies of formation and in the
lecules, i} peduced Gibbs frec energies found in thermodynamic tabulations.
n of thé discussing two examples (the compilation only of calorimetric
energy ofidata and only of equilibrium data) we show that the required
s of thé covariances can be obtained in the course of the normal processing

of experimental data.

Increasing numbers of calculations of the equilibrium composition
!;of multicomponent systems are now being published. The precision

stov L of these calculations is strongly dependent on the precision of the

equilibrium constants used in the calculation (or of the Gibbs free

fenergy AG® = —RTInK®°). Unfortunately, even when the best

w thermodynamics handbooks'? are used a reliable estimate of the
es), % error in the calculated equilibrium constants cannot be obtained.

For example, let us use the handbook Thermodynamic Properties
essov 4 of Pure Substances,’ which contains the most complete information

Vk’f v f on the errors of the tabulated thermodynamic quantities, and

teristics % calculate the error in the equilibrium constant of the reaction

in ¢

rov KBO(s)=KBOx(g) O]

; at 1100 K. According to the error propagation law we can write
1, 3
l o, 1 °

ops RD[Ln K°(1)] =77 DIAH @+ 5 DIAH (&)} +

r. Lit, +D[@°(g)] + D[®°(s)], @

lated where D is the dispersion. Using the errors in the enthalpies of
formation {AcHJKBO,, s) = —978 & 5 kJ mol™!, A;HYKBO,,
g) = —665 + 16 kJ mol !} and in the reduced Gibbs free energies

ounds), {®35,00(KBOy, §) = 117 + 5 J mol™! K7, @yy0(KBOz, g) =
322 + 10 J mol~! K~} from the handbook' the error in the
equilibrium constant In K°(1) is found to be +2.3. This means that
the error in the equilibrium constant K°(1) is an order of magnitude,

cheskikh  or 1000%.

‘ganic Yet, the same handbook® states that the equilibrium contants of

reaction (1) have been measured experimentally at 1050—-1230 K,
- and that in reality their error is less than 50% {104 inInK °)}.

It is not difficult to see why formula (2) seriously overestimated
the error in X°(1) in this case. Glushko et al.! obtained the enthalpy
of formation ArHYKBO,, g) from the experimentally measured
equilibrium constants of reaction (1):

AH (g)= AH °(8) + T[®*(g) —°(s) — R In K°(1)],

and useg the law: of propagation of errors to estimate its error,
DiaH (@)} =DlasH G)]+ THD[@°@)]+ D [®°(E)+ R 2D[ln K°()]} -

Thus the error in the enthalpy of formation of KBO; in the gas
phase quoted in the handbook ! is correlated with the errors in the
enthalpy of formation A/H°(s) and in the reduced Gibbs free
energy. This correlation is responsible for the seriously
overestimated error in In K°(1) when formula (2) is used. It should
be noted that the correlation of the errors in the tabulated
thermodynamic quantities is a feature common to all thermodynamic
handbooks. - ‘ ' :

In the present case, because the recommendations on the choice of
thermodynamic values are argued in depth,' the error in the
equilibrium constant can be estimated to within (at least) the nearest
order of magnitude.

The aim of the present work was to formalise the solution of this
problem in the general case. Firstly, we shall identify the
information required, in additon to the errors in the thermodynamic
quantities, in order to allow for the correlations between the errors.
Secondly (and equally important) we shall consider how this
information can be obtained from the set of recommended
thermodynamic quantities.

Allowance for the correlation between the errors in the enthalpies of
formation and in the reduced Gibbs free energies. We shall begin by
listing some useful relationships from mathematical statistics® which
will be used in our discussion. Let x be a vector of random
quantities, and D(x) be its dispersion matrix. If x consists of
independent random quantities, 2(x) has a diagonal form and
consists of the individual dispersions of the random quantities.
When the random quantities in x are mutually correlated the
nondiagonal terms in 9(x), called the covariances, are non-zero.

Let the vector of random quantities y be a linear transformation
of the vector x:

y=3x

(where & is the transformation matrix). In this case the dispersion
matrix of the vector y can be calculated by the formula

D(y) =D (x) £, ©)
where the prime (') denotes transposition. Egqn. (3) is a generalised
version of the error distribution law. Formulae like (2) are obtained
from (3) only when the random quantities appearing in X are linearly
independent. Otherwise Equ. (2) should include the covariances, i.e.
the nondiagonal terms from 2(x).

The random quantities which appear in the vector y are correlated
with the random quantities in the vector x. The covariances between
the individual random quantities are contained in the covariance
matrix cov (¥, X), which can be calculated as follows:

cov(y. x)=cov(x, y) =#D(x). )
Let us apply Egn. (3) to the chemical reaction

2 v;4,=0, 5

i
which is defined by the stoichiometric vector v = {Vi, «evs Vi)'
(v; > 0 for the products and v; < 0 for the reactants). The
equilibrium constant K °(5),

RIn K (5)=—VAH[T+v D,
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depends on the vectors of the enthalpies of formation, AcH =
{AcHY, .., AsH:)', and of the reduced Gibbs free energies,
® = {®,° ..., Po}’. ~In our case y is the scalar parameter
Rln K°(5) and x is the compound vector

)

whose dispersion matrix is
Q(x)=[ @(Alﬂ) OOV(AQH,Q) ] ,
- b cov(®, A D)
and the transformation matrix & is the row
U e N »
we(tZd. G
T |
By using Eqn. (3) we obtain the following formula for the dispersion
of the equilibrium constant

R'D{In K°(5)} = -;—,{v’m (AH)V} v D(®)v—
- —;—;{v’ cov(AH, @)v+v’ cov(®, Ad)v}.

This equation shows that in order to calculate the error of the
equilibrium constant we must know, in addition to the errors in the
enthalpies of formation and in the reduced Gibbs free energies [the

diagonal terms P(A,H) and 9(®))], also the covariances between the
enthalpies of formation [the nondiagonal terms D(AH),
the covariances between the reduced Gibbs free energies [the
nondiagonal terms 2(®)], and the covariances between the enthalpies
of formation and the reduced Gibbs free energies [the cov(ArH, ®)
matrix]. The use of formula (2) is legitimate only when all these
covariances are zero (a very rare case in thermodynamic practice).

Only the errors in the enthalpies of formation and in the reduced
Gibbs free energies are quoted in thermodynamics handbooks and
original publications at present. The covariances between
thermodynamic parameters are not given, and often not even
mentioned. The main reason is the lack of familiarity of the
majority of experimenters with the concept of covariance. Yet, in
the processing of the experimental data the covariances of the
parameters are no more difficult to obtain than the errors in the
parameters. The following approach can be used. We express the
tabulated thermodynamic quantities (vector y) as a function of the
experimentally measured values (vector x). Usually the measured
quantities are not mutually correlated [#(x) has a diagonal form].
In the limit the structure of @(x) can be established by a priori
considerations, relating to the experimental conditions. After this
procedure the formulae (3) and (4) give the required covariances in
addition to the errors of the tabulated quantities.

Let us examine this approach in greater detail by considering two
examples:  the compilation of calorimetry data alone and of
equilibrium data alone.

Compilation of calorimetric data. We shall discuss the simplest
system. Assume that all the available input data have been obtained
in calorimetric experiments: the vector of the experimental reaction
enthalpies A,H = (AH], ..., A HZ) (from combustion and
dissolution calorimetry) and the vector of the reduced Gibbs free
energies @ = {®f, ..., @)’ (from the integrals of the measured
specific heat of the individual substances). To simplify the treatment
we shall assume that all the reaction enthalpies have been measured
at the standard temperature.

-

- In this formulation of the problem the dispersion matrix 2(®) has
4 diagonal form, since the @ values for the different substances have
Heen obtained in independent experiments. The covariance matrix
cov(AsH, @) is also zero, since the enthalpies of formation are
obtained only from the reaction enthalpies without a contribution
from the reduced Gibbs frec energies. - Therefore the only remaining
problem is the "dispersion matrix D(A/H), which can contain
nondiagonal terms {the covariances between different enthalpies of
formation, cov(A;H} A;H)L

We shall assume that all the enthalpies of reaction have been
measured in- independent experiments. In other words, the
dispersion matrix 9 (A, H) has a diagonal form. We shall write it as

D (AH)Y =0 diag(W, ™', ... W), ®
where W, is the weight of the i-th reaction, and o2 is the dispersion
for unit weight.

The relationship between the enthalpies of formation and the
enthalpies of the reactions will be written

YA H=AH, 7
where ¥ is the stoichiometric matrix

FPe={v,, ..., Vn):

The rank of the matrix ¥ is always less than the number of
substances taking part in all the n reactions: rank(¥") < m(as a
result of the law of conservation of mass of the elements in chemica.
reactions). In practice this means that all substances should be
divided into two subsets: the subset 4, with known enthalpies of
formation, and the subset B, with unknown enthalpies of formation
Accordingly, the vector of the enthalpies of formation and the
stoichiometric matrix are written

T AHA ]
Y e S
and Eqn. (7) becomes
7’.A:H,=A.H—7’,.A.HA. (‘C

In general the classification of substances into two subsets shoul
be based on a definition which makes the enthalpy of formation of
simple substance in the standard state identically equal to zero, i
in which the subset 4 contains elements in their standard state and
contains all the other substances.

Eqn. (8) can be solved if the matrix ¥ has an integral rank.
not, the enthalpy of formation of all the substances in the subset
cannot be found without determining additional experimen:
reaction enthalpies.

By definition we can write the following equalities for t
enthalpy of formation of an element:

Adla=0 D(AHL)=0,
and use the least squares method with the weighting matrix
=2 (AH)™.

As a result we can express the unknown enthalpies of formation
terms of the experimental reaction enthalpies:

Al p= (7"3'” 7’s) -1y WA H.
If we now use Eqns. (3) and (6) we obtain an expression for
dispersion matrix of the enthalpies of formation:

D(AH ) = (F W)~ {
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The diagonal elements of this matrix are the dispersions of the
4 enthalpies of formation, and the nondiagonal terms are the
covariances between the various enthalpies of formation.

The full dispersion matrix of all the enthalpies of formation

1§ D(AH) is written

o - A|Ha ] _[ (AQH.) 0]
oen-o|gg1-l2=5 o).
? The formulae (10) and (11) are the solution of the first problem.
\; However, using this classification (4 for the elements in their
standard state, B for the other substances) we are often forced to
include a very large number of reactions (so as to obtain the full
rank of the matrix ¥3). For example, if we wish to use this
% classification to compile handbooks comparable to the existing
% (. bulations!? we need to solve a system of ~10000 equations with
1000 unknowns. It would also not be forgotten that after solving
of this system of equations once we shall need to solve it a second time
& when the experimental data for new substances have been added to

1t.

in

. The successive inclusion of experimental reaction enthalpies
£ involving new substances is a more convenient approach. In the first
£ step the enthalpies of formation of some substances are determined
f by using formulae (9)—(11). These substances can then be included
fz in the subset 4 with known enthalpies of formation. This calls for
% some modification of the equations given above, since AsH, and
D(AsH ) are now #0, though they are known.

i The first equation to be answered when solving the system of
| equations (8) by least squares is: should the dispersion matrix
§ 2(AH,) be included in the weighting matrix %7 In order to
b answer we must examine the conversion of (7) into (8) more closely.
f The transformation assumes that we do not wish to change the
' numerical values of the enthalpies of formation of the substances
E from the subset A4 by even the slightest amount, i.. in the solution
'

_f of the equations (8) all the enthalpies of formation AsH, are treated
© as exactly known, and the weighting matrix should be the same as
@ that used in the solution of the system of equations (9):
5 should%f W—diag(W,,...,W,).
ion of aé In the opposite case, if we wish to allow the errors in 2(ArHy)

ero, i.e.. When calculating the unknown enthalpies of formation we must not

¢ and B, object to a small change in the enthalpies of formation AsH,( during
! the solution. Under these conditions the least squares method has to
ank. If be applied not to the system (8) but to the following system of
ubset B equations:
rimental
AH 4
v [ 2 s
for the i W ’
3A1H4=A1H4, (12)
where & is the unitary matrix.
The change from (12) to (8) is possible only by ignoring the error
9{AsH 4) and writing the solution in the form
ation in

A (W7 )P ' W (A H—V aAH ). (13)

® However, in order to determine the full errors of the enthalpies of
for the formation A Hy obtained in this way we must allow for the errors in
AsH 4 by applying the formula (3) and (4) to Eqn. (13) and treating

(10

the vec;ors A H and ArH, as s&ﬁsﬁcally independent {covA,H,
A/H) =§-’0}. This gives "~~~ -~ "~ - .
{@ (AsHz) = (D (AH) 1V D (AH)F L}, .
cov (A, ALY =57 .D (AH.), (14)
where |
=P WV )"V W.

The full dispersion matrix of all the enthalpies of formation
P(ArH) can now be written

. H D(AHp) - cov(AHz, AdHy)
Q(AfH)=g[2f z] _ (ArHB) (AHp, Ay , s)
veH 4 cov(AsH4, ArHp) D(AH 4)

where the matrix 2(ArH ) should be given before the calculation of
AsHp, and the other matrices are calculated by Eqns. (14).

Compilation of equilibrium data. There are two ways of obtaining
the enthalpies of reactions from equilibrium constants: in the slang
of practical thermodynamics they are called the second-law and the
third-law calculation. The first approach uses the temperature
dependence of the equilibrium constants, whereas the second uses the
absolute values of A,S° (A,®°) calculated from the absolute
entropies of the substances. We shall discuss only the third-law
method, because it is most often used in the compilation of
equilibrium constants. When the second-law calculation is used it is
more difficult to assemble a set of mutually consistent
thermodynamic data.}?

Assume that the equilibrium constants K7, have been measured
for n Teactions. The subscript i gives the number of the reaction,
i =1, ..., n; the subscript j identifies the measured equilibrium
constant in the i-th reaction. To determine the unknown enthalpies
of formation we must minimise the following sum of squares
deviations:

o, vi'AH 2
Z‘(Ran;,,-'*'vT ! —W"D) Wi g

iJ 1.

(16)

where w;; is the weight of the equilibrium constant K7;. In the
third-law calculation the vector ® is assumed to be known a priori.
In that case, as we have shown,? the minimum in the sum of squared
deviations (16) is reached simultancously with the minimum of

Z (A,H{O—V;AfH)ch, ) (17)

where A, H¢is the average experimental enthalpy of the i-th reaction,

A,—H.'o = 2 (‘v‘-d)——R In K:,') U){JT(_; / EwijT{;z‘ (18)

E

and W, is the weight assigned to the i-th reaction,

Wi = Z lng_,T.'—J.
H

This means that the equilibrium constants can be calculated
independently for each reaction, so as to obtain the enthalpies of the
reactions. A system of equations entirely analogous to the system
(7) is thus obtained whose solution is also given by Eqn. (13).

19)
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We note that the errors in the reduced Gibbs free energies @ are

not used in detefmining the weight of the reaction enthalpies in -
formula (19). This aspect was discussed above in the section on the

errors in AfH,. When finding the minimum of the sum of squared
deviations (16) we do not wish to alter the @ values used in the
calculation even by the smallest amount.
calculation of the reaction enthalpies (and therefore also of the
enthalpies of formation) the ® values are treated as exact.

However, after finding the enthalpies of formation by Eqn. (13)
we must allow for the errors in all the quantities used in the

calculation in order to determine their full .error. To simplify the:
treatment the arguments to follow will be developed in the’

approximation of temperature independence of the reduced Gibbs
free energies and of their errors. This will make clear all the main
features of the problem and will give a reasonably good first

approximation. Without this assumption both the derivations and |

the final formulae would be extremely elaborate without any gain in
information content. :
We transform Eqn. (18) treating @ as constant:

Aer°=Yi+T. i’ ‘D'

where Y, is a function of the experimental equilibrium contants,

Y= — Z Rin K:quT:_;‘ /2 ws.:T:iz,
i H

and T; is the mean temperature of the i-th reaction,

T.= ZT;‘ / ZT“?'

We now re-write the equation in the matrix form
A H=Y+T 70,

where & = diag(Ty, ..
expression into Eqn. (13)

.. T,), and we insert this simplified

AH y=t (YFT P O-F AH ). 20)
Equ. (20) gives the relationship between the calculated enthalpies of
formation and the initial quantities: equilibrium constants, reduced
Gibbs free energies, and given enthalpies of formation. Equs. €))
and (4) can now be used. The only remaining problem is to
establish whether non-zero covariances between the three vectors
used in the calculation are present.

The vector Y was obtained exclusively from experimental
equilibrium constants, without using ® or A;H,. This means that
the covariance matrices between Y and @ or between Y and ApHy
are zero.

However, whether the covariance matrix cov(ArH,, ®) is zero
depends on how the subset A (consisting of substances with known
enthalpies of formation) was assembled. In order to satisfy the
condition cov(A;H, ®) = 0 the enthalpics of formation of the
substances in the subset 4 must be determined only from
calorimetric experiments, without using the reduced Gibbs free
energies, which can always be done by expanding the set of
reactions. Unless this is done we have cov(AsH,) # 0, and the

This means that in the :

Russian Journal of Physical Chemistry 66 (12) !

covariances from this matrix must be given. However, in any
we can write : D e
D(AHy) =D (Y)+TFD (YT +¥ D AH) Y L~
TP cov{®, A )PS V. cov(AHa, QY IYst’,
cov(Ada, AH L) =S4T Y cov(®, ML)~V 1D (Al 4),
cov(A.H,, d’)-.st?'?’ﬂ)(‘b) ~SE¥ 4 cOv (AfHA, o).

The full dispersion matrix for all the quantities to be tabulatec

[oHs] [2(8Hs) | cov(BsHs, AHy) cov(ArH, @)
DIAH, Y = cov(AiHy, BHp) D(ArH ) OOV(Aij, @®)
[+ cov(®, ArH ) cov(®, AHH 4)

(D)

The dispersion matrices 2(AsH,) and @(®) and the covari
matrix cov(AcH4, ®){cov(®, A/Hy)cov(AgH,, ®)'} must
known - before formula (13) is used; the other quantities
calculated by Eqns. (21)—(23).

The writer is grateful to O M Vovk and E A Kaibicheva
extensive and helpful discussions.
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