ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА HgO.

М.В. Горбачева, А.Ф.Майорова, С.Н.Мудрецова, Е.Б.Рудный,

А.Д.Русин

Московский государственный университет им. М.В.Ломоносова

Химический факультет

Поступила в редакцию 04.1997

Методом ДСК определена теплоемкость HgO в интервале 300-650 К. Статическим методом с помощью мембранного манометра изучено давление ненасыщенного пара HgO в интервале 700-950 К. На основе совокупности полученных экспериментальных данных и имеющейся литературной информации рассчитаны значения термодинамических функций HgO в твердой фазе, а так же оценен состав газовой фазы и энтальпия образования HgO(г) из жидкой ртути и кислорода, которая составила 48.12 кДж моль⁻¹.

В системе Hg-O имеется один конденсированный оксид - HgO. Существуют две формы - красный и желтый оксиды ртути. Долгое время в литературе обсуждался вопрос, являются ли красный и желтый HgO двумя кристаллическими модификациями или эти формы отличаются только размерами кристаллов. В последнее время принято считать [1], что красная и желтая формы HgO отличаются только размерами кристаллов (желтый HgO имеет более мелкие кристаллы).

Энтальпия образования HgO из жидкой ртути и газообразного кислорода при 298.15 К измерена калориметрически [2-4], также проводилось измерение энергии Гиббса реакции образования HgO методом ЭДС [5-8] в интервале температур 273-333 К с жидким щелочным электролитом в ячейке:

 H_{2} , Pt | щелочь | HgO (кр.), Hg (ж),

потенциалобразующая реакция которой может быть записана следующим образом:

HgO (
$$\kappa p$$
.) + H₂ = Hg (κ) + H₂O.

Энтальпиии образования по данным калориметрии и метода ЭДС хорошо согласуются между собой. Величина $\Delta_{\rm f} {\rm H}^0(298.15 {\rm K})$, предложенная в [9] на основе критического анализа имеющейся литературной информации по калориметрии и ЭДС, составляет -90.83 ± 0.34 кДж моль⁻¹ и входит во многие современные справочники и базы данных [10-12]. Абсолютное $S^{0}(298.15)$ HgO K), энтропии полученное значение на основе экспериментальных данных по низкотемпературной теплоемкости в [9], составляет 70.17 ± 0.21 Дж моль⁻¹ К⁻¹ и согласуется в пределах указанных погрешностей со значениями S⁰(298.15 K), рассчитанным по данными ЭДС [5-8].

Изучение давления насыщенного пара проводилось в интервале 633-753 К статическими и динамическим методами [13]. Авторы [13] отмечают, что равновесие

HgO (κp .) = Hg (Γ) + 0.5 O₂

устанавливается крайне медленно, поэтому для ускорения процессов использовали такие катализаторы как Fe₂O₃, MnO₂, CdO.

Экспериментальные работы по изучению теплоемкости HgO при температурах выше 298 К неизвестны.

Экспериментальные данные, подтверждающие существование газообразного монооксида ртути, получены сравнительно недавно методами высокотемпературной масс-спектрометрии [14] и спектроскопии матричной изоляции [15]. Термодинамические свойства газообразного HgO, представленные в [10], оценены сравнительным методом по свойствам газообразного PbO. Молекулярные постоянные, оцененные в JANAF, хорошо согласуются с последними экспериментальными данными [15] и величинами, рассчитанными квантовомеханически [16]. В работе [15] выдвинуто предположение о существовании HgO₂ в газовой фазе, однако каких-либо сведений о термодинамических свойствах этого соединения нет. Следует ожидать, что HgO₂ термодинамически нестабильна при повышенных температурах.

В настоящей работе путем совместной обработки полученных нами и литературных экспериментальных данных рассчитаны значения термодинамических функций HgO в твердой фазе, а также оценен состав газовой фазы и энтальпия образования HgO (г).

Описание эксперимента.

Термоаналитические исследования проводили методом ТГ-ДСК на термоанализаторе STA-409 фирмы Netzsch, Германия. При проведении экспериментов навески HgO ("ч.д.а.") 30-50 мг помещали в алундовые точечное отверстие. Изучение тигли С крышками. имеющими теплоемкости проводили на образце HgO ("ч.д.а.") массой 80 мг в виде таблетки (d=6, h=3 мм) в платиновом тигле с крышкой. Систему вакуумировали до 100 Па, промывали осушенным по специальной методике [17] кислородом, затем заполняли им же до давления 1.03×10⁵ Па. Термограмма НgO в интервале 300-900 К представлена на рис. 1, скорость сканирования по температуре составляла 20 Кмин⁻¹. Для энтальпии реакции разложения HgO было проведено определения коэффициентов чувствительности прибора определение В данном интервале температур с помощью таких стандартов как K₂SO₄, K₂CrO₄, BaCO₃. Энтальпия реакции разложения по данным пяти экспериментов составила -140±10 кДж моль⁻¹. Температура начала пика в условиях проведения эксперимента (20 Кмин⁻¹, P(O₂)=1.03×10⁵ Па) составила 808±2 К.

Измерения теплоемкости проводили в интервале 300-650 К, скорость сканирования по температуре составляла 10 К мин⁻¹. В качестве стандарта

3

использовали монокристалл синтетического сапфира α -Al₂O₃ (Union Carbide Corporation), снабженный сертификатом Национального Бюро Стандартов США, теплоемкость которого определена с точностью ±0.1% в интервале 70-1173 К. Результаты измерения теплоемкости представлены в таблице 1, точность измерения полагали равной 5%.

Давление ненасыщенного пара HgO в присутствии кислорода изучали статическим методом с помощью кварцевого мембранного манометра. Схема экспериментальной установки приведена на рис.2. Давление в реакторе измерялось компенсационным методом. В работе использована оптическая система регистрации отклонения штока мембраны под действием разности давления по обе стороны мембраны. Инструментальная погрешность измерения давления составляла 5 Па (для доверительной вероятности 0.95). Реальная погрешность измерения давления составляла 60-80 Па и обусловлена, в основном, погрешностью определения нулевой точки мембраны при нагреве и охлаждении.

Температура измерялась прокалиброванной Pt-Pt/10%Rh термопарой. Вторая, подвижная, термопара (не показана на рисунке) измеряла поле температур вдоль реактора. Максимальный перепад температур вдоль реактора составлял 2-7 К. Погрешность измерения температуры оценивали равной 1-2 К.

После предварительного отжига реактора (1123 К, 4 часа) навеску HgO (0.06627 г) помещали в отросток реактора (рис.2). Реактор обезгаживался в вакууме (0.1 Па) при нагреве до 723 К в течение 2 суток. Затем реактор заполняли кислородом до давления 21.42 кПа. Навеску HgO сбрасывали в реактор и отросток отпаивали в точке А (рис.2). Реактор помещали в сосуд Дьюара со смесью дистиллированной воды и льда, и после установления теплового равновесия давление в реакторе при 273.15 К составило 19265±16 Па.

4

Для нагрева реактора использовали 4-х секционную печь. В печь был вставлен выравнивающий блок из нержавеющей стали. При нагреве от комнатной температуры до первой температурной точки тепловое равновесие устанавливалось за 2 часа после достижения заданной температуры. Полагали, что термическое равновесие в печи установилось, когда температура оставалась постоянной во времени в пределях ±0.02 К.

Хотя погрешность измерения давления оценивали равной 60-80 Па, относительные измерения давления можно было проводить с погрешностью 10-20 Па. Поэтому полагали, что равновесие в паре установилось при данной температуре, если стандартное отклонение давления пара по 10-12 измерениям в течении 30-40 минут не превышало 10 Па.

Готовится к публикации статья, в которой более подробно будет описана методическая часть проведения эксперимента по измерению давления пара, а также обработка первичных экспериментальных данных.

Термодинамическое описание HgO (кр).

Для описания температурной зависимости теплоемкости *Ср(T)* использовали выражение, предложенное в [18]

$$Cp = k_0 + k_1 T^{0.5} + k_2 T^2 + k_3 T^3, \qquad (1)$$

где коэффициенты k_1 и k_2 - величины не положительные. Преимущества этого выражения подробно обсуждаются в [19]. Оно дает физически корректное описание теплоемкости без максимумов и минимумов и с ассимптотически правильным поведением при высоких температурах и позволяет осуществлять экстраполяцию низкотемпературной теплоемкости в область повышенных температур. Авторы [19] рекомендуют использовать это выражение для температур выше 250 К, кроме того при температурах выше 298 К два последних слагаемых в (1) практически не Поиск значений параметров осуществляли методом наибольшего правдоподобия [20]. Для выяснения оптимального набора параметров описанную ниже процедуру проводили последовательно с увеличением числа параметров до тех пор, пока введение нового параметра не переставало влиять на точность описания. Суть метода заключается в следующем. Экспериментальное значение теплоемкости Cp_{ij} представляли в следующем виде:

$$C_{p\,ij} = Cp_{ij} (pacy.) + \varepsilon_{ij}, \qquad (2)$$

где индекс *i* соответствует номеру экспериментальной серии (i=1,...M), индекс *j* - номеру точки в *i*-той серии $(j=1,...N_i)$, Cp_{ij} (*pacч.*) - значение теплоемкости рассчитанное по (1), ε_{ij} - полная ошибка, которая представлялась в виде

$$\varepsilon_{ij} = \varepsilon_{r,ij} + \varepsilon_{a,ij} + \varepsilon_{b,i}(T_{ij}-T_i),$$
 (3)

где $\varepsilon_{r,ij}$ - ошибка воспроизводимости, $\varepsilon_{a,ij}$, $\varepsilon_{b,i}$ - систематические ошибки сдвига и поворота соответственно, $T_i = \sum_j T_{ij} / N_i$ - средняя температура в *i*-той серии.

Для нахождения неизвестных параметров из уравнения (1) находили максимум целевой функции вида:

$$L = -\ln\{\det[D(\varepsilon)]\} - \varepsilon' D(\varepsilon)^{-1} \varepsilon, \quad (4)$$

где D(ϵ) - дисперсионная матрица полных ошибок ϵ_{ij} , ϵ - вектор полных ошибок ϵ_{ij} .

Для расчета параметров уравнения (1) и термодинамических функций кристаллического HgO использовалась следующая экспериментальная информация: значения теплоемкости HgO в интервале 250-298К [9] и в интервале 300-700К (настоящая работа), значения $\Delta_{\rm f} {\rm H}^0$ (298.15 K) = -90.83 кДж моль⁻¹ и S⁰(298.15 K)= 70.17 Дж моль⁻¹K⁻¹ [10] На рис.3 представлены графики зависимости теплоемкости HgO, полученные при использовании в уравнении (1) двух (кривая 1) и трех (кривая 2) параметров. Как видно из рис.3 экспериментальные данные лучше всего описываются уравненим (1) с тремя параметрами. Для сравнения на графике приведена зависимость Cp(T) по данным [10] (кривая 3).

В результате оптимизации получены следующие значения параметров уравнения (1): $k_0 = 60.23$ Дж моль⁻¹ K⁻¹, $k_1 = -381.75$ Дж моль⁻¹ K^{-0.5}, $k_2 = -2.556 * 10^5$ Дж К моль⁻¹.

Основные термодинамические свойства HgO(кр.) представлены в таблице 3. Полученное решение в пределах указанных погрешностей согласуется со всеми экспериментальными данными.

Термодинамическое описание HgO(r).

Для расчета равновесного состава газовой фазы и определения энтальпии образования HgO ($\Delta_f H^0(298.15)$) использовались следующие термодинамические соотношения. Полагали, что газовая фаза образована следующими соединениями: Hg, $O_{2},$ HgO, между которыми устанавливается равновесие. Для расчета равновесного состава рассматривали реакцию:

$$Hg(\Gamma) + 0.5 O_2 = HgO(\Gamma)$$
(5)

Для реакции (5)

$$\frac{\Delta H^0}{RT} + \frac{\Delta S^0}{R} = lnK_p, \tag{6}$$

где, с учетом законов идеального газа,

$$K_p = \frac{P_{HgO}}{P_{Hg}P_{O_2}^{0.5}} = \frac{x}{(a-x)(b-x/2)^{0.5}} (V/RT)^{0.5}, \quad (7)$$

a, b - исходные количества ртути и кислорода соответственно, x - количество образующегося HgO, $0 \le x \le a$. Значение x определяли методом

деления отрезков пополам. Общее давление в системе записывали по аналогии с (2) как

$$p_{ij} = p_{ij} (pacч.) + \varepsilon_{ij},$$

где p_{ij} , p_{ij} (расч.)- экспериментальные и рассчитанные по (6),(7) значения давления пара в системе соответственно, ε_{ij} ,- полная ошибка, которая записывалась как (3). Для расчета были использованы значения термодинамических функций O₂, Hg(г) и HgO(г), предложенные в [10], в качестве неизвестного оставляли значение энтальпии реакции (5) $\Delta H^0(5)$.

В результате оптимизации получено значение $\Delta H^0(5) = -13.26$ кДж моль⁻¹. Рассчитанное значение энтальпии образования HgO(г) из O₂ и Hg(ж) ($\Delta_i H^0(298.15)$), составило 48.12 кДж моль⁻¹, что несколько выше величины, предложенной в [10] (41.84 кДж моль⁻¹). Расчет равновесного состава газовой фазы показывает, что количество HgO в газовой фазе незначительно (таблица 4), и в первом приближении образованием HgO(г) можно пренебречь. На рис. 4 представлены зависимости давления пара в системе от температуры по данным настоящей работы и по данным [11]. Для сравнения на рис.4 приведен график зависимости давления в системе в предположении, что монооксид ртути в газовой фазе не образуется, то есть в случае простого термического расширения газа. Более наглядно поведение этих функций в изученном интервале температур можно проследить по отклонениям общего давления в системе от вычисленного в настоящей работе (p - p^{calc}), кПа.

Рассчитанное значене энтальпии реакции разложения HgO(кр.)

$$HgO(\kappa p_{.}) = Hg(\Gamma) + 0.5O_2$$

составило -138.91 кДж моль⁻¹, что в пределах погрешности совпадает с величиной -140 \pm 10 кДж моль⁻¹, полученной по данным ТГ-ДСК анализа.

Список литературы

- 1. Некрасов Б.В./ Основы общей химии. Т.2. М.: Химия. 1973. С.194
- 2. Tomsen J.// Z.Physik.Chem. 1888. V.2. P.23.
- 3. Varet M.R. // Ann.Chim.Phys. 1896. V.8. N7. P.79.
- 4. Nernst W..// Z .Physik.Chem. 1888. V.2. P.23.
- 5. Bronsted J.N. // Z. Physik Chem. 1909. V.65. P.84.
- 6. Luther R., Pokorny F.// Z.Anorg. Aligem.Chem. 1908. V.57. P.290.
- 7. Donnan F.G., Allmand A.J. // Z.Electrochem. 1910. V.16. P.254.
- 8. Fried F..//Z.Physic.Chem. 1926. V.123. P.406.
- 9. Bauer T.W., Johnson H.L. // J.Am.Chem. Soc. 1953. V.75. P.2217.
- 10. JANAF Thermochemical Tables, Third Edition, Washington D.C., 1985
- 11. Sundman B., Jansson B., Andersson J.O. //Calphad. 1985. V.9. P.153. SGTE Substance Database, версия 1994 г., включенная в THERMOCALC.
- 12. Gurvuch L.V.//High Temp. Sci. 1989. V.26. P.197. IVTANTHERMO, версия 1993.
- 13. Taylor G.B., Hulett G.A. // J. Phys.Chem. 1950. V.17. P.565.
- 14. Grade M., Hirschwald W. //Ber.Bunsenges Phys.Chem.1982. V.86. P.899.
- Butler R., Kats S., Snelton A., Stephens J.B. // J.Phys.Chem. 1979. V.83.
 N20. P.2578.
- Ковба В.М., Тополь И.А. //Весн. Моск. Ун-та. Сер 2. Химия. 1992. Т.33.
 N2. С.122.
- 17. Майорова А.Ф., Мудрецова С.Н., Горбачева М.В., Ковба М.Л., Русин А.Д.//Весн.Моск.Ун-та.Сер.2. Химия. 1997. Т. N2. С.
- 18. Berman R.G., Brown T.H.//Contrib. Mineral.Petrol. 1985. V.89. P.168.
- 19. Воронин Г.Ф., Успенская И.А.//
- 20. Rudnyi E.B. //Chemometric and Intelligent Lab. System. 1996. V.34. P.41.

Т, К	Cp,	T,K	Cp,
323	47.00	503	49.38
343	47.00	523	48.17
363	47.43	543	49.38
383	47.87	563	49.38
423	48.08	583	49.82
443	48.73	603	49.82
463	48.52	623	49.82
483	48.95	643	49.82

Таблица 1. Экспериментальные значения теплоемкости кристаллического HgO (Ср, Дж моль⁻¹К⁻¹) по данным ДСК

Таблица 2. Экспериментальные значения давления ненасыщенного пара HgO.

Нагревание		Охлаждение	
T,K	Р, кПа	Т,К	Р, кПа
759.2	72.730	925.9	91.720
759.7	74.444	894.2	88.182
777.1	76.420	879.3	87.182
794.5	78.483	868.2	86.023
810.4	80.056	850.2	84.299
826.2	81.681	834.7	82.735
841.7	83.216	818.6	81.153
857.5	84.935	802.7	79.631
878.4	87.242	788.3	78.107
909.9	90.174	786.0	77.987
940.6	93.588	785.8	77.927
		778.2	77.211
		778.1	77.180

	760.3	75.443
	704.3	70.049

Τ,	Ср,	S^{0} ,	H(T)-H(298),	
K	Äæ ìîëü ⁻¹ Ê ⁻¹	Äæ ìîëü ⁻¹ Ê ⁻¹	êÄæ ìîëü ⁻¹	
298.15	44.01	70.25	0	
300	44.08 70.52		0.08	
350	45.82	77.46	2.33	
400	00 47.11 83.66		4.66	
450	48.10	89.27	7.04	
500	49.90	94.38	9.46	
550	49.56 99.07		11.93	
600	50.11 103.41		14.42	
650	50.58	107.44	16.93	
700	51.00	111.21	19.47	
750	51.36	114.74	22.03	
800	51.68	118.06	24.61	

Таблица 3. Термодинамические свойства HgO (тв)

850	51.97	121.20	27.20
900	52.23	124.18	29.81

Таблица 4. Зависимость константы равновесия (Кр) реакции (1) от температуры и количество HgO в газовой фазе (n, мольн.%)

	По данным [10]		Настоящая работа	
T,K	Кр	n	Кр	n
500	0.999	7.65	0.126	0.79
550	0.648	5.90	0.098	0.65
600	0.451	4.65	0.080	0.56
650	0.332	3.76	0.067	0.50
700	0.255	3.11	0.058	0.44
750	0.203	2.64	0.051	0.41
800	0.166	2.27	0.045	0.38
850	0.139	2.00	0.041	0.35
900	0.119	1.77	0.037	0.33
950	0.103	1.60	0.035	0.31

Подписи к рисункам к статье Горбачевой М.В., Майоровой А.Ф. "Термодинамические свойства HgO."

Рис.1. Термограмма HgO, Po₂=1.03×10⁵ Па, скорость нагрева - 20 К мин⁻¹.

Рис.2 Схема установки для измерения давления пара: 1 - баллон с аргоном; 2-4 - игольчатые вентили тонкой регулировки; 5-11 - вакуумные краны; 12 - кварцевый реактор; 13 - навеска HgO; 14 - зеркало штока мембраны; 15 оптическое окошко; 16 - ртутный манометр; 17 - форвакуумный насос; 18 буфферная емкость; 19 - термопара.

Рис.3. Зависимость теплоемкости (Ср, Дж моль⁻¹ К⁻¹) HgO (кр.) от температуры: 1 - два коэфициента в уравнении (1), 2- три коэффициента в уравнении (1), 3 - [10], 4 - [9], 5 - экспериментальные точки, полученные в настоящей работе.

Рис. 4. Зависимость давления ненасыщенного пара (Р, кПа) от температуры: 1,2 - экспериментальные данные при охлаждении и нагреве

соответственно; 3 - [10]; 4 - рекомендованное решение; 5 - HgO в паре отсутствует.

Реферат

Горбачева М.В., Майорова А.Ф., Мудрецова С.Н., Рудный Е.Б., Русин А.Д. ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА HgO.

Методом ДСК определена теплоемкость HgO в интервале 300-650 К. Статическим методом с помощью мембранного манометра изучено давление ненасыщенного пара HgO в интервале 700-950 К. На основе совокупности полученных экспериментальных данных и имеющейся литературной информации рассчитаны значения термодинамических функций HgO в твердой фазе, а так же оценен состав газовой фазы и энтальпия образования HgO(г) из жидкой ртути и кислорода, которая составила 48.12 кДж моль⁻¹.