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@.‘ Preliminaries
IMTEK®

Learning Goals

¢ Reaction path on the potential surface

¢ Transition state theory

¢ Simulating rare events

¢ Sampling transition pathways

References

¢ D. Frenkel and B. Smit, Understanding Molecular Simulation, Aca-
demic Press, San Diego (1996)
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@.‘ On-line resources

IMTEK®

¢ Chandler, D., http:/ / gold.cchem.berkeley.edu:8080/ pubs.html
¢ "Barrier Crossing: Classical Theory of Rare But Important
Events”

¢ "Electron Transfer in Water and Other Polar Environments,
How It Happens”

¢ "Finding Transition Pathways: Throwing Ropes Over Rough
Mountain Passes, in the Dark"

¢ B.]J. Berne
http:/ /www.chem.columbia.edu/~bernegrp / publications.html

¢ TheRate 1.1 Manual (transition state theory)
http:/ / therate.hec.utah.edu/manual /index.html

¢ Mark Tuckerman,
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IMTEK®

@o‘ Reaction path

¢ Saddle point and reaction path
¢ Reaction path

¢ Searching saddle points

¢ Intrinsic reaction path

¢ Non-adiabatic reactions
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o Saddle point and reaction path

IMTEK®

¢ A model reaction AB + C = A + BC {two coordinates, r(AB) and r(BC)}

Potential
energy

- = 0

7 Rup

from Atkins
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o* Reaction Path

IMTEK®

¢ Chemical kinetics: E, >> kgT
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@Tmm Searching saddle points

¢ Stationary point of U(X): OU = 0 or ou/ox, = 0

¢ A, is a eigenvalue of the U Hessian at the stationary point

¢ if all A; are positive we have minimum

¢ if only one A; is negative - a first order saddle point
¢ A common strategy: to start from the minimum
¢ In simple cases - chemical intuition and then “try and error”
¢ Modification of Newton-Raphson algo-
rithm: eigenmode-following methods
¢ Systematic search: a modification of Branch and N ¢ (¢
Bound algorithm (K.M. Westerberg, J. Chem. .~

Phys. 1999, v. 110, N 18, p.9259) BN
¢ Alanine: 17 minima, 62 1st order saddles, 83 H o, H
2nd order saddles, 46 3rd order saddles, 7 max.
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@. Intrinsic reaction path

IMTEK®

¢ Use mass-weighted coordinate: cor-
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¢ Start from the saddle point W | \ [\ "
SN Lo -' >
¢ Make a small move along the eigen- N e NN
vector with the negative eigenvalue — #=-7 TSIt T TR
T T
\ |
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@.‘ Non-adiabatic reactions

IMTEK®

¢+ Example: electron transfer Fe?" + Fe>* = Fe3" + Fe?*
from 98Chandler2 state AB state AB~
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@.‘ Transition state theory

IMTEK®

¢ Terms in chemical kinetics

¢ Transition state theory, I

¢ Transition state theory, II

¢ Corrections
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@. Terms in chemical kinetics

IMTEK®

¢ Elementary reaction: a single step in a possible multi-step reaction
mechanism

¢ A -> B :unimolecular reaction, A + B -> : bimolecular reaction

dn
¢ Reaction rate and the rate law: _\E/EA = W = KCxCq

¢ k- amacroscopic rate constant

¢ Microscopic rate constant is a rate for interaction of molecules in giv-
en quantum states that produces the product also in given quantum
states

¢+ A() + B(j) > C(k) + D(1)
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@,o Transition state theory, I

IMTEK®
¢ X+Y>X+Y

¢ Phase space NGHY)

¢ Critical surface S* divides the phase
space to reagents (I) and products

(IT)

¢ Chemical reaction is a crossing of S*

by a phase point

CemunoxuH, Ctpaxos, Ocunos

¢ The distribution function f(§, p) is
Maxwell-Boltzman: equilibrium kinetics

¢ The rate is equal to the flux over the dividing surface and there is no
recrossing

) ) ) ) ) i ALBERT-LUDWIGS-
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@.‘ Transition state theory, 11

IMTEK®

¢ Element of the phase space dI' = M.dpdg/h’
¢ Reaction coordinate, normal to the dividing surface, q,, p;-

¢ Dividing surface dr” = I'Iiirdpidqi/hs, ——>dr =drd p.dg./h

¢ The flux is ON = f(§, 6)dr = @dr;’tdmddr

dt dt
f(§, p)dr’dp.d
¢ Rate constant kg7 = %-[ (E}fﬁ()a ﬁ)d? Clr, H = Hi"'Hr
“H /(KT
_ kgT [e e )dri _ kgT (-aF")/(kgT)
TsT = h e—H/(kBT)dr T n

¢ After integration
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@»‘ Corrections

IMTEK®

¢ Kk = Xkygy, X is the transmission factor

¢ Tunneling: might be important at lower temperatures _

¢ Recrossing, X is less than one, L/\/

” | e demo from Atkins Q -
i fe— Arhenius ‘ § 2
Al \]i 1 ¢ Kkyg7is the upper limit
E 107} L"l"'» Tunneling
@ Vet ] ¢ The product Xkyg7 is indepen-
e dent on the position of the divid- "

1000/ T (K") ing surface ..chQ&
Haenggi, o o ﬂ i
Rev. Mod. Phys. ¢ Variational transition state theo-

1990, v. 62, N2, ry
p.251

CY =
g
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@. Simulating rare events

IMTEK®

¢ Rare events

¢ Time correlation function

¢ Rate constant

¢ Simulation

¢ Coupling
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IMTEK®

¢

Rare events

Example A =B

T,0qc 15 long time

Tmol 1S quick

time, 1013

Z

[T BF

s moIe

reac

Direct simula-
tion requires

U=NTieqc

e (B
edl D
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@.‘ Time correlation function
IMTEK®
S + ) 98Chandlerl
v =g 09, T
L0, g<q | -
X = [M] equilibrium mole ii
fraction of B v t

k
¢ 2 = Keq = A~ B, detailed balanced

¢ population fluctuation, dh(t) = h[q(t)] — UhQ
1

¢ correlation function Chah(t)] = % [h(t)Bh(t + t)dt
0

with a constraint h(0) = 1: not-equilibrium average
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@“ Rate constant

IMTEK®

¢ [hdh(t)00 Chah(0)E ™

¢ Reactive flux correlation function K(t) = _c(jjt 51?2 (((g))% [] ke_kt
k(t) 98Chandlerl
¢ k(0+) = kT ST
¢ X = k(Tmol)/k(O-l-) k(0™)
ke—l-tt
¢ working equation /”
kK = Xkyst K
! t
Tmal
N traﬁgent ~
relaxation

\&¢ ~ﬁ =
e ] R
G215 s
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IMTEK®

@.‘ Simulation

¢ Choose a transition state, q¢

¢ Perform free energy perturbation simulation to estimate AF’

kgT O AFT .
¢ you have k;g1 = ——exp-——= and also a number of equilibrat-
h " OksTH

ed point at the transition state

¢ Run trajectories from the transition state for 1., to determine trans-
mission factor

¢ Computational advantage

¢ Direct simulation time is NT, cac

¢ Time of sampling trajectories from transition state T,,+ NT

]an G. KOI'Vink, Chair for Microsystem Simulation - UNIVERSITAT FREIBURG
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@» Coupling with the surrounding

IMTEK®

¢ MX+Cx+0OV(x) = DW(t), C = yM, friction parameter

transmission ‘

coefficient @@
i /-‘L—‘-q

s coupling €

Kramers ragime

coupling
("friction”, "viscosity", . . .)

Lindemann—Hinshelwood regime

K = coupling, 1, : ' Z l

S
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@.‘ Sampling transition pathways

IMTEK®

¢ Complex potential surface

¢+ “Throwing ropes in the dark”

¢ Example: cluster reorganization kinetics
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@. Complex potential surface

IMTEK®

¢ Example: dissociation of NaCl in water 98Chandler3

¢ Order parameter R(Na™ - CI)

¢ Does not take into account solvation

S
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@.‘ “Throwing ropes in the dark”

IMTEK®

¢ time slice t, separated by AT, PA[r(t)] = h(rg)p(rg)MP(r, resq)

¢ Paglr()] = halre)p(ro)MP(ry, 1y 1)hp(ry)
¢ time correlation function

Thahg(T)O _ [Or(t)(Paglr (1)) oy / @

A PO (PAr )

¢ T is of the order of plateau time

Thhg ()0
th, 0

OKagT

q

Dellago, J. Chem. Phys. 1998, v. 108,
N5, p, 1964
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@.‘ Example
¢ Cold cluster of seven Lermard-]ones disks, kgT = 0.0%€

O% - OOOO% %}O“’"‘* +@§C§>

& o
B - - P~
- o8 - & D) e e e ow m e T e
O@ B~ S~ K
Predominant pathways '1f” - _

98Chandler3 M

eSS
o o s MicrOSYStem smaton UNIVERSITAT FREIBURG



@.‘ Summary

IMTEK®

¢ Reaction path on the potential surface
¢ Transition state theory
¢ Simulating rare events

¢ Sampling transition pathways
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