Chemical Kinetics: Simulation of Rare Events

Jan G. Korvink and Evgenii Rudnyi
IMTEK
Albert Ludwig University
Freiburg, Germany

Preliminaries

Learning Goals

- Reaction path on the potential surface
- Transition state theory
- Simulating rare events
- Sampling transition pathways

References

♦ D. Frenkel and B. Smit, Understanding Molecular Simulation, Academic Press, San Diego (1996)

IMTEK+-

On-line resources

UNIVERSITÄT FREIBURG

- Chandler, D., http://gold.cchem.berkeley.edu:8080/pubs.html
 - ♦ "Barrier Crossing: Classical Theory of Rare But Important Events"
 - "Electron Transfer in Water and Other Polar Environments, How It Happens"
 - "Finding Transition Pathways: Throwing Ropes Over Rough Mountain Passes, in the Dark"
- B. J. Berne http://www.chem.columbia.edu/~bernegrp/publications.html
- TheRate 1.1 Manual (transition state theory) http://therate.hec.utah.edu/manual/index.html
- Mark Tuckerman, http://homepages.nyu.edu/~mt33/jpc_feat/jpc_feat_part.html

Reaction path

Saddle point and reaction path

Reaction path

Searching saddle points

♦ Intrinsic reaction path

Non-adiabatic reactions

Saddle point and reaction path

UNIVERSITÄT FREIBURG

• A model reaction AB + C = A + BC {two coordinates, r(AB) and r(BC)}

Reaction Path

UNIVERSITÄT FREIBURG

• Chemical kinetics: $E_a >> k_BT$

Searching saddle points

- Stationary point of U(x): $\nabla U = 0$ or $\partial U/\partial x_i = 0$
- \bullet λ_i is a eigenvalue of the U Hessian at the stationary point
 - if all λ_i are positive we have minimum
 - if only one λ_i is negative a first order saddle point
- ♦ A common strategy: to start from the minimum
 - ♦ In simple cases chemical intuition and then "try and error"
 - Modification of Newton-Raphson algorithm: eigenmode-following methods
- Systematic search: a modification of Branch and Bound algorithm (K.M. Westerberg, J. Chem. Phys. 1999, v. 110, N 18, p.9259)
 - Alanine: 17 minima, 62 1st order saddles, 83
 2nd order saddles, 46 3rd order saddles, 7 max.

FIG. 19. Alanine.

Intrinsic reaction path

- Use mass-weighted coordinate: corresponds to the complete dumping of energy
- Start from the saddle point
- Make a small move along the eigenvector with the negative eigenvalue
- Then follow steepest descent path (negative gradient) by small steps

FIG. 20. ψ - ϕ plot for alanine.

Non-adiabatic reactions

UNIVERSITÄT FREIBURG

• Example: electron transfer $Fe^{2+} + Fe^{3+} = Fe^{3+} + Fe^{2+}$

Transition state theory

Terms in chemical kinetics

Transition state theory, I

Transition state theory, II

Corrections

Terms in chemical kinetics

- Elementary reaction: a single step in a possible multi-step reaction mechanism
- \bullet A -> B : unimolecular reaction, A + B -> : bimolecular reaction
- Reaction rate and the rate law: $-\frac{1}{V}\frac{dn_A}{dt} = w = kc_A c_B$
 - ♦ *k* a macroscopic rate constant
- Microscopic rate constant is a rate for interaction of molecules in given quantum states that produces the product also in given quantum states
 - A(i) + B(j) -> C(k) + D(1)

Transition state theory, I

- \star X + Y -> X' + Y'
- Phase space $\Gamma(\vec{q}, \vec{p})$
- ◆ Critical surface S[≠] divides the phase space to reagents (I) and products (II)
- Chemical reaction is a crossing of S[≠]
 by a phase point

Семиохин, Страхов, Осипов

- The distribution function $f(\vec{q}, \vec{p})$ is Maxwell-Boltzman: equilibrium kinetics
- The rate is equal to the flux over the dividing surface and there is no recrossing

Transition state theory, II

- Element of the phase space $d\Gamma = \prod_i dp_i dq_i / h^s$
- Reaction coordinate, normal to the dividing surface, q_r , p_r .
- Dividing surface $d\Gamma^{\neq} = \prod_{i \neq r} dp_i dq_i / h^s$, ==> $d\Gamma = d\Gamma^{\neq} dp_r dq_r / h$
- The flux is $\frac{dN}{dt} = f(\vec{q}, \vec{p}) \frac{d\Gamma}{dt} = \frac{f(\vec{q}, \vec{p})}{h} d\Gamma^{\neq} dp_r dq_r$
- Rate constant $k_{TST} = \frac{1}{h} \frac{\int f(\vec{q}, \vec{p}) d\Gamma^{\neq} dp_r dq_r}{\int f(\vec{q}, \vec{p}) d\Gamma}$, $H = H^{\neq} + H_r$

$$k_{TST} = \frac{k_B T}{h} \frac{\int e^{-H^{\neq}/(k_B T)} d\Gamma^{\neq}}{\int e^{-H/(k_B T)} d\Gamma} = \frac{k_B T}{h} e^{(-\Delta F^{\neq})/(k_B T)}$$

After integration

Corrections

- $k = \chi k_{TST}$, χ is the transmission factor
- Tunneling: might be important at lower temperatures

Haenggi, Rev. Mod. Phys. 1990, v. 62, N2, p.251

 Recrossing, χ is less than one, demo from Atkins

Variational transition state theo-ry

Simulating rare events

Rare events

♦ Time correlation function

♦ Rate constant

♦ Simulation

Coupling

Rare events

UNIVERSITÄT FREIBURG

- Example A = B
- τ_{reac} is long time
- τ_{mol} is quick time, 10^{-13} s
- $\bullet \quad \tau_{reac} \sim \tau_{mol} e^{\beta F^{\neq}}$
- Direct simulation requires $t \approx n\tau_{reac}$

Time correlation function

•
$$h(q) = \begin{cases} 1, q > q^{\neq} \\ 0, q < q^{\neq'} \end{cases}$$

 $x = \langle h \rangle$, equilibrium mole fraction of B

•
$$\frac{x}{1-x} = K_{eq} = \frac{k_{A \to B}}{k_{B \to A}}$$
, detailed balanced

- population fluctuation, $\delta h(t) = h[q(t)] \langle h \rangle$
- correlation function $\langle h\delta h(t)\rangle = \frac{1}{\tau} \int_{0}^{\tau} h(t')\delta h(t'+t)dt'$ with a constraint h(0) = 1: not-equilibrium average

Rate constant

UNIVERSITÄT FREIBURG

- $\langle h\delta h(t)\rangle \sim \langle h\delta h(0)\rangle e^{-kt}$
- Reactive flux correlation function $k(t) = -\frac{d}{dt} \frac{\langle h \delta h(t) \rangle}{\langle h \delta h(0) \rangle} \sim ke^{-kt}$

- working equation $k = \chi k_{TST}$

Simulation

- Choose a transition state, q^{\neq}
- Perform free energy perturbation simulation to estimate ΔF^{\neq}
 - you have $k_{TST} = \frac{k_B T}{h} \exp\left(-\frac{\Delta F^{\neq}}{k_B T}\right)$ and also a number of equilibrated point at the transition state
- Run trajectories from the transition state for τ_{mol} to determine transmission factor
- Computational advantage
 - Direct simulation time is $N\tau_{reac}$
 - Time of sampling trajectories from transition state $\tau_{eq} + N\tau_{mol}$

Coupling with the surrounding

UNIVERSITÄT FREIBURG

• $M\ddot{x} + C\dot{x} + \nabla V(x) = D\dot{W}(t)$, $C = \gamma M$, friction parameter

Sampling transition pathways

Complex potential surface

"Throwing ropes in the dark"

Example: cluster reorganization kinetics

Complex potential surface

- ♦ Example: dissociation of NaCl in water
 - ◆ Order parameter R(Na⁺ Cl⁻)
 - Does not take into account solvation shell

http://www.chem.rochester.edu/Faculty/Dellago.html

98Chandler3

"Throwing ropes in the dark"

- time slice t, separated by $\Delta \tau$, $P_A[r(t)] = h_A(r_0) \rho(r_0) \Pi_t P(r_t, r_{t+1})$
- $P_{AB}[r(t)] = h_A(r_0)\rho(r_0)\Pi_t P(r_t, r_{t+1})h_B(r_L)$
- time correlation function

$$\frac{\langle h_A h_B(\tau) \rangle}{\langle h_A \rangle} = \frac{\int Dr(t) (P_{AB}[r(t)])}{\int Dr(t) (P_A[r(t)])}$$

• τ is of the order of plateau time $\frac{\langle h_A h_B(\tau) \rangle}{\langle h_A \rangle} \sim k_{AB} \tau$

Dellago, J. Chem. Phys. 1998, v. 108, N 5, p. 1964

Example

• Cold cluster of seven Lennard-Jones disks, $k_B T = 0.05\epsilon$

Predominant pathways

98Chandler3

UNIVERSITÄT FREIBURG

Summary

- Reaction path on the potential surface
- Transition state theory
- Simulating rare events
- Sampling transition pathways

