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Introduction to phase diagrams

 

♦

 

One-component phase diagram: S - solid, L - liquid, V - vapor
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Temperature-density and temperature-pressure
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Equilibria criteria

 

♦

 

U, V const -> max S
T, V const -> min F
T, p const -> min G

 

♦

 

Phase 1: 

Phase 2: 

 

♦

 

U - internal energy, V - volume, n -
n
p

   

♦

 

M  

 

and

 

 

 

♦

 

R and phase 
e

T1S1 dU1 p1dV1 µ1dn1–+=

T2S2 dU2 p2dV2 µ2dn2–+=

t V1 V2+ const=

= µ1 µ2=

Panagiotopolus, http://kea.princeton.edu/
, p2
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umber of moles, T - temperature, p -
ressure, µ - chemical potential

aximize  at 

esult: thermal , mechanical 
quilibria criteria

S S1 S2+= U1 U2+ cons=

T1 T2= p1
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Phase molar Gibbs energy

♦ If the molar Gibbs energy function  is known for all the
phases in question, it is possible to compute all the equilibrium prop-
erties {mole fraction }

♦ Gibbs energy , entropy , volume , 

e H - pV, 
H

♦ C

♦ P riu riterion

Gm T p x, ,( )

xi ni ni∑( )⁄=

G nGm= S
T∂

∂G–= V
p∂

∂G–=
m c
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nthalpy H = G + TS, internal energy U = 
elmholtz energy F = G - pV

hemical potential 

hase equilibria by employing the equilib

µi ni∂
∂G=
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Thermodynamics simulation

♦ Two component systems

♦ Two phases: solid solution +
liquid solution

♦ Regular solution model

♦ E
“
Ω
a

♦ C
t

∆mixG RT xA xA xB xBln+ln( )=

Ω+ xAxB

reference?
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ach phase characterized by
an interaction parameter” -
. If it is zero we have an “ide-
l solution”

ontinuous change in Ω leads
o different topology
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CALPHAD

♦ Community to produce the
databases of molar Gibbs en-
ergies to compute the chemi-
cal and phase equilibria in
the multicomponent systems

♦ Phenomenological approach:

♦

♦

.m c/
et.kth.se/t
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to choose an analytical
form for the molar Gibbs
energy

to determine unknowns
parameters from all avail-
able experimental results

http://www
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Simulating partition function

♦ Partition function: , 

Helmholtz energy: 

♦ Impossible to compute, Metropolis algorithm can estimate only

♦ T n write

♦ D gh rgy regions

Z
1

h
dN

N!
--------------- βE–{ }exp pNd rNd∫= β 1 kBT⁄=

F Uo kBT Zln–=

D〈 〉
βE–{ }exp D pN rN,( ) pNd rNd∫----------------------------------------------------------------------------=

1
Z
- βE{ }p
 ene

ex=
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rick , then we ca

 where 

oes not help: it is necessary to sample hi

βE–{ }exp pNd rNd∫
1 βE–{ } β E{ }expexp=

--
βE–{ }exp βE{ }exp pNd rNd∫

βE–{ }exp pNd rNd∫
--------------------------------------------------------------------------= D
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Simulations of phase equilibria

♦ Computing difference between two free energies

♦ Particle insertion

♦ Direct simulation

♦ Gibbs ensemble method

♦ M

♦ E
orvink, Chair for Microsystem Simulation

ore tricks

xample: water
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Free Energy Difference, I

♦ Two systems: reference U1 and in question U2

♦ Coupling parameter between two systems 

♦ Partition function depend on λ 

♦ , <>-ensemble average

♦ T

♦ R  e ate integral numeri-
c

U λ( ) 1 λ–( )U1 λU2+=

Z a βU λ( )–{ }exp rNd∫=

∂F

  βE–{ }exp U λ( ) λ∂⁄∂( ) rNd∫-----------------------------------------------------------------------

λ∂
∂U〈 〉

λ
∂U〈 〉 λd∫=
stim

∂
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hen, thermodynamic integration: 

un a series simulation at different λ, then
ally

λ∂  NVT βE–{ }exp rNd∫
==

F2 F1–



ALBERT-LUDWIGS-
UNIVERSITÄT FREIBURGJan G. K

Free Energy Difference, II

♦ Two systems: reference U1 and in question U2

♦

♦ Write expression for Z and use 

♦ Thermodynamic perturbation

♦ M

♦ M

♦ I tic is is not.

F2 F1– kBT Z2 Z1⁄( )ln–=

1 β1U1–{ } β U1{ }expexp=

kBT
U2 U1–

kBT
--------------------– 

 exp〈 〉ln
1

–

U1 U2–

kBT
--------------------– 

 exp〈 〉n
2

–

e, th

kBT l
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onte-Carlo over the system 1: 

onte-Carlo over the system 2: 

n principle, this is equivalent, but in prac

F2 F1– =

F2 F1– =
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Particle insertion: Widom approach

♦ First state - N particles, second state - N+1 particles

♦

♦ Because of change in the number of particles

♦

♦ I
t
w

♦ P
p

µ
n∂

∂F
 
 

TV
F2 F1– kBT ZN 1+ ZN⁄( )ln–= = =

µ
Utest 

.princeton.edu/
http://kea
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t is possible to derive similar for the par-
icle deletion, but the performance is
orse

roblem with crystals: no place to insert a
article

ex µ µid– kBT
kBT
-----------– exp〈 〉ln

1
–= =
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Direct simulation

♦ The main problem is introducing interface

♦ The equilibration time is too long

♦ T
l

♦ C

♦ E
n
d

Table 1: Percentage of particles in the interface of a cubic domain (from Frencel&Smit)

N 125 1 000 64 000 1 000 000
Pint 78% 49% 14% 6%
orvink, Chair for Microsystem Simulation

he metastable states (overcooled
iquid or oversaturated vapor)

omputationally expensive

xample: two-phase three compo-
ent system (Panagiotopoulus, J. Phys.: Con-
ens. Matter 12 (2000) R25)
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Gibbs ensemble method

♦ Simulating two-phase equilibria without interface

♦ Two different boxes at given temperature

♦ P u

♦ C
/
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anagiotopoulus, http://kea.princeton.ed

hemical potential in the implicit form
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More tricks

♦ Non-Boltzman distributions

♦ Sampling high energy states: Umbrella sampling

♦ Configuration bias Monte-Carlo

♦ Cluster moves

♦ Histogram-re-
w
G
M
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eighting method: 
rand Canonical
onte-Carlo

http://kea.princeton.edu/
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Example: water

♦ It is necessary to derive specialized force fields

Pa
orvink, Chair for Microsystem Simulation

nagiotopoulos, 2000
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QC: Molecule in solution

♦ Molecules in the electrical field

♦ Extreme case

♦ Macroscopic continuum models

♦ E

♦ D
orvink, Chair for Microsystem Simulation

lectrostatic energy

iscrete modeling of the solvation shell
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Molecules in the electrical field

♦ Electrical field leads to the mol-
ecule polarization (non-zero net
dipole moment)

♦ The field of these dipoles runs
against the inducing field

♦ Macroscopic result - dielectric

c

h
t

♦ T
t
d

http://gilsonlab.umbi.umd.edu
orvink, Chair for Microsystem Simulation

onstant 

exane - 1.9, benzene - 2.3, wa-
er - 78
he electronic distribution in
he molecule in the solution is
ifferent

U
q1q2

4πεεor12
----------------------=
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Extreme case

♦ Solution chemistry
Na2SO4 = Na+ + SO4

2-

♦ However, SO4
2- is not

stable in the gas phase

♦ Second electron affinity
i
S

♦ Q
f
S

http://www.chem.msu.su/~rudnyi/ions/
orvink, Chair for Microsystem Simulation

s negative
O4

2- = SO4
-+ e

uantum chemistry (or
orce field) of individual
O4

2- is of no use
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Macroscopic continuum models

♦ , total = isolated molecule + solvation energy

♦ , solvation = electrostatic + dispersion + cavity

♦ If we can not use Eo, then let us solve
Schrödinger equation with modified
Hamiltonian 

♦ P

e pend on T), but we

io rgy

E Eo Es+=

Es Ees Edisp Ecav+ +=

H Ho U+=

http://gilsonlab.umbi.umd.edu
(ε de

n ene
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roblems:

♦ Whether we can use macroscopic
ε near cavity

♦ We take solvent at some temperatur
describe ground molecule energy

♦ Es - solvation energy or Gibbs solvat
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Electrostatic interaction

♦ Kirkwood, molecule - N point charges , spherical cavity

,

n - multipole expansion, a - cavity radius, P - Legendre polynomial

♦ n = 0, monopole, Born solvation energy for the ions,

♦ n

♦ F ua

Qi r i,{ }

Ees
1
2
---Σn

n 1+( ) 1 ε–( )
n n 1+( )ε+

----------------------------------Σij QiQj

r i r j( )n

a
2n 1+

----------------Pn Θijcos( )=

E

2 ε 1–( )
2ε 1+

-------------------µ2

a
3

-----=
tion

1
2
---–
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 = 1, dipole, Onsager’s reaction field 

or non-spheric cavities, solve Poisson eq

es
Q

2

2a
------ 1 1

ε
---– 

 –=

Ees
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Discrete solvation shell

♦ To model solvation shell, add point charges
around the molecule in question

♦ Advantage

♦ More real interactions
♦ No cavity geometry
♦ No mascroscopic parameters

♦

♦ S f the
s u

♦

http://www.weizmann.ac.il/
chemphys/faeder/Gallery/
les
orvink, Chair for Microsystem Simulation

Problems

♦ How to construct the solvation shell

olve Schrödinger equation for a cluster o
olute molecule and several solvent molec

Optimize geometry
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Simulating molecule in solution

♦ Continuum models: Poisson-Boltzman equation

♦ Example: trypsin

♦ Stochastic mechanics
orvink, Chair for Microsystem Simulation
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Continuum models

♦ Take protein and make a cavity based on van der Waals radii of at-
oms

♦ Write Poisson equation 

♦ Use ε for solvent out of the cavity, and ε=2-4 within the cavity to take
into account the polarization of the atoms

♦ M by Boltzman equation

♦ C e 
k

♦ S  th ite difference meth-
o

∇ε∇φ 4πρ–=

n

∇ε∇φ kφ– 4πρ–=
e fin
orvink, Chair for Microsystem Simulation

odel a concentration of the mobile ions 

ombine and, to make life simple, lineariz
 is related to Debye-Hückel radius

olve by the boundary element method or
d

nbulk Qφ kBT( )⁄–( )exp=
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Results

♦ From Leach’s book

♦ 3D Electrostatic isopo-
tential contours around
trypsin [Marquart et al
1983]. Contours are
drawn at -1kT (red) and
+1kT (blue). The trypsin
i
w
t
m
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nhibitor is also shown
ith its electrostatic po-
ential mapped onto the
olecular surface.
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Stochastic mechanics

♦ One solute molecule + a number of solvent molecules

♦ Non-periodic, stochastic boundary conditions

♦ Langevin dynamics 

♦ Kinetic energy: mass matrix and acceleration
♦ Dissipation energy to surrounding: dumping matrix and veloc-

 Wiener process

♦ F

♦ T

Mẋ̇ Cẋ ∇ V x( )+ + DẆ t( )=

k

C

BTC

γM=
orvink, Chair for Microsystem Simulation

ity
♦ Potential function
♦ RHS: normalized white noise, W(t) -

luctuation-dissipation theorem 

ypically dumping matrix is modeled as 

DD
T

2=
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Summary

♦ Phase Equilibria

♦ Phase diagrams and classical thermodynamics

♦ Simulations of phase equilibria

♦ Molecular solutions

♦ Quantum chemistry: molecule in the solution

♦

orvink, Chair for Microsystem Simulation

Simulating molecule in the solution
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