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Main Points

• A homogeneous phase can be spontaneously decomposed into two immiscible phases.

• Concentration gradients  can be spontaneously formed at  the border  between immiscible 
phases when the system reaches its equilibrium state.

• At  constant  temperature  and  pressure  the  entropy  of  system in  question  spontaneously 
decreases during the separation process.

• In the adiabatic system the increase of the entropy leads to the phase separation from a 
homogeneous solution.

Introduction

Recently I have written a small text Schrödinger’s Order, Disorder and Entropy [1] and discussed 
it on the biosemiotic list. During discussion, there was a suggestion to consider a solution with a 
miscibility gap (see Fig 1). In this case, a homogeneous mixture spontaneously decomposes to two 
different solutions with different concentrations of components.

Fig 1. Miscible and Immiscible Liquids (From Youtube [2])

In this text, I will take a simple regular solution as an example and show that in an adiabatically 
isolated system, the increase of the entropy corresponds to the formation of two phases from a 
homogeneous mixture. I believe that this is a good point to think it over in what case there is more 
order or disorder: in a homogeneous system or in two immiscible phases.

http://blog.rudnyi.ru/
http://www.youtube.com/watch?v=NqQ_Uea9o0c
http://blog.rudnyi.ru/2013/04/schrodinger-disorder-and-entropy.html


We start  with a conventional  treatment  at  constant temperature and pressure that I  will  then 
generalize to the case of an adiabatic system. I believe that one finds a similar treatment in many 
thermodynamics textbooks. Yet, as I was unable quickly to find in Internet what I was looking for, I 
have decided to write it from the scratch. In my blog [3], you will find auxiliary files to produce all  
figures that you will find below.

Constant temperature and pressure

Let us consider one mole of a solution between A and B that will be denoted as L. I will use x to  
denote the mole fraction of B, hence the mole fraction of A will be 1 – x. By  definition, a simple  
regular solution is described by Eq (1)

Δmix G(T , p , x )=RT (1−x) ln(1−x )+RT x ln x+β(1−x) x (1)

where β is the interaction parameter. In all plots in the present work, the interaction parameter is set 
to β = 2000 R. The Gibbs energy of mixing is defined as the difference between the Gibbs energy of 
solution A-B and pure components:

Δmix G(T , p , x )=G(T , p , x )L−{(1−x)GA(T , p)+ xGB(T , p)} (2)

The  Gibbs  energy in  variables  temperature  and  pressure  is  a  master  function  and  all  other 
thermodynamic properties could be found from it. For example:

(
∂G
∂T

)
p , x

=−S T 2
(
∂(G /T )

∂T
)

p , x

=−H (
∂G
∂ p

)
T , x

=V (3)

The application of Eq (3) to Eq (1) gives us the expression for the entropy, enthalpy, and volume of 
mixing of the regular solution as follows:

Δmix S (T , p , x)=−{R(1−x) ln(1−x)+R x ln x } (4)

Δmix H (T , p , x)=β(1−x) x (5)

Δmix V (T , p , x )=0 (6)

According to Eq (4) the entropy of mixing of the regular solution is equal to that of the ideal 
solution and it does not depend on temperature (see Fig 2). The entropy increases during formation 
of the solution and the maximum of the entropy is at the composition equal to x=0.5 when one 
mixes  the equal  amounts  of  A and B.  The enthalpy of  mixing (Eq 5)  is  positive provided the 
interaction parameter is positive (see Fig 3) and the volume of mixing is zero (the volume of the  
solution is equal to the sum of volumes of the components).

The Gibbs energy of mixing (Eq 1) depends on temperature (see Fig 4). At higher temperatures it 
has a convex form while at lower temperature it has a concave form. This tells us that at these 
temperatures the homogenous solution is unstable and a miscibility gap appears. In general Fig 4 
shows us an interplay between the entropy and enthalpy contributions. At lower temperatures the 
entropy contribution is small and the enthalpy still plays a significant role. At this condition there is 
a  miscibility  gap,  as  the  formation  of  the  solution  is  not  favorable  energetically.  At  higher 
temperatures the contribution from the entropy increases, the enthalpy role diminishes, and there is 
no immiscibility any more.



Fig 2. The entropy of mixing of the regular solution

Fig 3. The enthalpy of mixing of the regular 
solution (β = 2000 R)

Fig 4. The Gibbs energy of mixing of the regular 
solution at three temperatures (β = 2000 R)



The behavior of the Gibbs energy shown in Fig 4 leads to a phase diagram with a miscibility gap 
shown in Fig 5. There are two regions in the phase diagram. First there is the miscibility gap where  
one finds two phases L1 and L2 coexisting with each other: the equilibrium state is similar to shown 
in Fig 1. Second there is the region with one phase only that depending on the area could be referred 
to as L, L1, or L2. L1 is the solution where the concentration of A is greater than that of B and L2 is 
vice versa. Above the critical temperature there is no immiscibility at all and the division to L1 and 
L2 does not make sense any more. Note that all area on the phase diagram including the miscibility 
gap are described by the same Gibbs energy expressed by Eq (1). Let us consider this in more detail  
below.

Fig 5. Miscibility gap in the regular solution

Let us consider a closed system made of 0.5 mole of A plus 0.5 mole of B. This constraints us to  
the  vertical  line  in  Fig 5 at  mole  fraction  of  B x = 0.5.  There  is  no mass  exchange with  the 
surrounding and the system cannot escape this vertical line. Nevertheless, there are two possible 
states of the system, as we can have either a homogeneous solution L, or two-phase equilibrium L1 
+ L2. Let us explore these possibilities first from a viewpoint of material balance.

In the case of the homogeneous solution L its composition is fixed to x = 0.5. The phase diagram 
in Fig 5 says that such a solution is stable above the critical temperature and unstable below the  
critical temperature. In any case, the Gibbs energy of mixing is given by Eq (1) and it can be found  
in Fig 4 at x = 0.5 for all temperatures, whether the homogeneous solution is stable or not.

In the case of the two phase equilibrium, the components A and B could be transferred from one 
phase to another but the total number of moles must not be changed. This means that in each phase 
the mole fraction of B is different from 0.5 but the mass balance must be held

0.5=n( A , L1)+n( A , L2)
0.5=n(B , L1)+n( B ,L2)

(7)

The symmetricity of  the Gibbs energy and hence of  the  phase diagram allows me to  simplify 
mathematics. I will limit the analysis to variations expressed by one variable z only as follows

A0.5 B0.5→0.5A 0.5+z B0.5−z+0.5A0.5−z B0.5+ z (8)



It is easy to check that the mass balance in (7) is satisfied in (8). It is possible to say that z in Eq (8) 
plays a role of an order parameter. When z = 0, L1 is equivalent to L2 (and the original L) and in 
this case we have actually one phase only in the system. When z > 0, L1 and L2 are two different  
phases with different concentrations of components and hence different densities. The total Gibbs 
energy of the two phases L1 and L2 will be a sum G(L1) + G(L2). Now with the use of Eq (1) and  
(2) and the mass constraints in Eq (8), the total Gibbs energy is

0.5GA(T , p)+0.5GB(T , p)+0.5Δmix G(T , p ,0.5−z )+0.5ΔmixG (T , p ,0.5+z ) (9)

as the mole fraction of B in L1 is 0.5 – z and in L2 is 0.5 + z. As I have already mentioned, the same 
Equation (1) can be used to describe everything in the phase diagram in Fig 5.

Eq (9) describes potential variations in the Gibbs energy of the closed system with 0.5 mole of A 
and 0.5 mole of B as a function of the order parameter z in accordance with the mass balance. The 
value of z at equilibrium can be found from the equilibrium criterion: at constant temperature and 
pressure,   the  Gibbs  energy  of  the  system  at  equilibrium  is  minimal.  The  straightforward 
mathematics gives us from Eq (9) the explicit function to minimize

G(T , p , z )=0.5GA(T , p)+0.5GB (T , p)+RT (0.5−z )ln (0.5−z)
+RT (0.5+ z) ln(0.5+z )+β(0.5−z )(0.5+z )

(10)

and its derivative that should be at equilibrium equal to zero
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Note that Eq (11) has always a trivial solution at z = 0. Whether this solution corresponds to a  
minimum or maximum will be determined by the second derivative. At the temperatures below the 
critical temperature, there is a nontrivial solution for which can be found numerically. In Fig 6, the 
derivative (11) is plotted at several temperatures to demonstrate such a behavior. The nontrivial 
solution will correspond to the minimum of the Gibbs energy and determine the phase diagram 
shown in Fig 5.

Fig 6. The derivative of the Gibbs energy at three 
temperatures (β = 2000 R) 



It  is  interesting  to  note  that  under  the  critical  temperature,  spontaneous  separation  of  the 
homogeneous solution during reaction (8) at constant temperature and pressure reduces the entropy 
of the system. This clearly shows us that at these conditions it is not the entropy of the system but 
the Gibbs energy that determines the spontaneous direction of the process.

Constant enthalpy and pressure

Now I extend the treatment above to an adiabatic system. It is more convenient to consider not 
an  isolated  system  but  a  system  at  constant  enthalpy  and  pressure.  In  this  case,  I  need  less 
assumptions on the constituent equations.

At constant enthalpy and pressure, the maximum of the entropy determines the equilibrium state 
of the system: max S(H, p). Let us check that the separation process will take place spontaneously 
in the adiabatic system with the regular solution under the critical temperature. 

There is the important difference with the previous section. Now during the change of z in the 
process (8) the temperature changes. The separation reaction (8) is exothermic and the generated 
heat increases the temperature of the system. Eq (10) already contains temperature but now it is 
necessary also to write down the temperature dependence for pure components. To this end, again to 
keep mathematics as simple as possible, I assume that the heat mole thermal capacities of A and B 
are constant and equal in the considered temperature interval.

C p( A)=C p(B)=C p=const (12)

Now the temperature dependence of enthalpies of pure A and B is as follows

0.5HA(T , p)+0.5HB(T , p)=H 0( p)+C p T (13)

were H0 is as follows (T0 is the reference temperature)

H 0( p)=0.5HA(T 0, p)+0.5HB(T 0, p)−C pT 0 (14)

Accordingly we obtain the expression for entropies of pure A and B

0.5SA(T , p)+0.5SB(T , p)=S0( p)+C p lnT (15)

where

S 0( p)=0.5SA(T 0, p)+0.5SB(T 0, p)−C p ln T 0 (16)

Now with Eqs (13) and (15) and the application of derivatives in Eq (3) to Eq (10), we get  
expressions for the entropy and enthalpy of L1 + L2 in the separation process (8):

S (T , p , z)=S 0( p)+C p ln T−R(0.5−z )ln (0.5−z)−R(0.5+z )ln (0.5+ z) (17)

H (T , p , z)=H 0( p)+C p T+β(0.5−z)(0.5+z ) (18)

Finally we express the temperature from Eq (18) as a function of  H and  z and substitute it in Eq 
(17). This gives us the entropy as a function of H, p, z:
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The derivative of Eq (19) over z at constant enthalpy and pressure allows us to find the equilibrium 
value of z. Before I write a derivative down, it would be good to rewrite Eq (19) in such a way to  
make it more useful for practical use. During the minimization, it is necessary to keep the enthalpy 
H constant but the natural question is how we choose its numerical value. Provided that we define 
the starting point of the separation process as the homogeneous solution (z = 0) at given temperature 
Tini, the enthalpy that must be constant is determined by Eq 18 as follows

H−H 0( p)=C pT ini+0.25β (20)

Hence Eq (19) could be written as

S (H , p , z)=S 0( p)+C p ln(
C pT ini+β(0.25−(0.5−z )(0.5+z ))
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)
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At equilibrium the final temperature can be found from the constraint of the enthalpy being constant

C p T ini+0.25β=C p T fin+β(0.5−z )(0.5+ z) (22)

as

T fin−T ini=β(0.25−(0.5−z )(0.5+z ))/C p (23)

Now the derivative of Eq (21):
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Similar to the derivative of the Gibbs energy (11), the derivative of the entropy always has a trivial 
root z = 0. It describes the maximum of the entropy in the system above the critical temperature. 
Under the critical temperature it corresponds to the minimum of the entropy of the system (the 
homogeneous  solution  is  thermodynamically  unstable).  The  equilibrium composition  under  the 
critical temperature is associated with the non-trivial root of Eq (24) that can be found numerically. 
To this end, I have written a script in Python using SciPy to solve Eq (24) and (23). It is available in 
my blog [3]. For example with Tini = 800 K, Cp = 10 R, β = 2000 R, the solution of Eq (24), z = 
0.338, and from Eq (23) it follows Tfin = 822.8 K.

The treatment shows that in the adiabatically isolated system with the regular solution under 
critical temperature, the increase of the system entropy corresponds to the spontaneous separation of 
the homogeneous solution L into the two phases L1 + L2. I leave as an exercise to prove that when 
one starts under critical  temperature in the adiabatically isolated system, the temperature of the 
system during the separation process will never increase the critical temperature. One can also play 
with my Python script to see this fact in numerical experiments.
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